Home | << 1 2 >> |
Records | |||||
---|---|---|---|---|---|
Author | Mildred Cruz; Cristhian A. Aguilera; Boris X. Vintimilla; Ricardo Toledo; Ángel D. Sappa | ||||
Title | Cross-spectral image registration and fusion: an evaluation study | Type | Conference Article | ||
Year | 2015 | Publication | 2nd International Conference on Machine Vision and Machine Learning | Abbreviated Journal | |
Volume | 331 | Issue | Pages | ||
Keywords | multispectral imaging; image registration; data fusion; infrared and visible spectra | ||||
Abstract | This paper presents a preliminary study on the registration and fusion of cross-spectral imaging. The objective is to evaluate the validity of widely used computer vision approaches when they are applied at different spectral bands. In particular, we are interested in merging images from the infrared (both long wave infrared: LWIR and near infrared: NIR) and visible spectrum (VS). Experimental results with different data sets are presented. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Computer Vision Center | Place of Publication | Barcelona, Spain | Editor | |
Language | English | Summary Language | English | Original Title | |
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | cidis @ cidis @ | Serial | 35 | ||
Permanent link to this record | |||||
Author | Cristhian A. Aguilera, Cristhian Aguilera, Cristóbal A. Navarro, & Angel D. Sappa | ||||
Title | Fast CNN Stereo Depth Estimation through Embedded GPU Devices | Type | Journal Article | ||
Year | 2020 | Publication | Sensors 2020 | Abbreviated Journal | |
Volume | Vol. 2020-June | Issue | 11 | Pages | pp. 1-13 |
Keywords | stereo matching; deep learning; embedded GPU | ||||
Abstract | Current CNN-based stereo depth estimation models can barely run under real-time constraints on embedded graphic processing unit (GPU) devices. Moreover, state-of-the-art evaluations usually do not consider model optimization techniques, being that it is unknown what is the current potential on embedded GPU devices. In this work, we evaluate two state-of-the-art models on three different embedded GPU devices, with and without optimization methods, presenting performance results that illustrate the actual capabilities of embedded GPU devices for stereo depth estimation. More importantly, based on our evaluation, we propose the use of a U-Net like architecture for postprocessing the cost-volume, instead of a typical sequence of 3D convolutions, drastically augmenting the runtime speed of current models. In our experiments, we achieve real-time inference speed, in the range of 5–32 ms, for 1216 368 input stereo images on the Jetson TX2, Jetson Xavier, and Jetson Nano embedded devices. |
||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | English | Summary Language | English | Original Title | |
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | 14248220 | ISBN | Medium | ||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | cidis @ cidis @ | Serial | 132 | ||
Permanent link to this record |