Home | << 1 2 3 4 5 >> |
Records | |||||
---|---|---|---|---|---|
Author | Milton Mendieta; F. Panchana; B. Andrade; B. Bayot; C. Vaca; Boris X. Vintimilla; Dennis G. Romero | ||||
Title | Organ identification on shrimp histological images: A comparative study considering CNN and feature engineering. | Type | Conference Article | ||
Year | 2018 | Publication | IEEE Ecuador Technical Chapters Meeting ETCM 2018. Cuenca, Ecuador | Abbreviated Journal | |
Volume | Issue | Pages | 1-6 | ||
Keywords | |||||
Abstract | The identification of shrimp organs in biology using histological images is a complex task. Shrimp histological images poses a big challenge due to their texture and similarity among classes. Image classification by using feature engineering and convolutional neural networks (CNN) are suitable methods to assist biologists when performing organ detection. This work evaluates the Bag-of-Visual-Words (BOVW) and Pyramid-Bagof- Words (PBOW) models for image classification leveraging big data techniques; and transfer learning for the same classification task by using a pre-trained CNN. A comparative analysis of these two different techniques is performed, highlighting the characteristics of both approaches on the shrimp organs identification problem. |
||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | gtsi @ user @ | Serial | 87 | ||
Permanent link to this record | |||||
Author | Dennis G. Romero; A. F. Neto; T. F. Bastos; Boris X. Vintimilla | ||||
Title | RWE patterns extraction for on-line human action recognition through window-based analysis of invariant moments | Type | Conference Article | ||
Year | 2012 | Publication | 5th Workshop in applied Robotics and Automation (RoboControl) | Abbreviated Journal | |
Volume | Issue | Pages | |||
Keywords | Human action recognition, Relative Wavelet Energy, Window-based temporal analysis. | ||||
Abstract | This paper presents a method for on-line human action recognition on video sequences. An analysis based on Mahalanobis distance is performed to identify the “idle” state, which defines the beginning and end of the person movement, for posterior patterns extraction based on Relative Wavelet Energy from sequences of invariant moments. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | English | Summary Language | English | Original Title | |
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | cidis @ cidis @ | Serial | 23 | ||
Permanent link to this record | |||||
Author | Miguel Realpe; Boris X. Vintimilla; Ljubo Vlacic | ||||
Title | Sensor Fault Detection and Diagnosis for autonomous vehicles | Type | Conference Article | ||
Year | 2015 | Publication | 2nd International Conference on Mechatronics, Automation and Manufacturing (ICMAM 2015), International Conference on, Singapur, 2015 | Abbreviated Journal | |
Volume | 30 | Issue | MATEC Web of Conferences | Pages | 1-6 |
Keywords | |||||
Abstract | In recent years testing autonomous vehicles on public roads has become a reality. However, before having autonomous vehicles completely accepted on the roads, they have to demonstrate safe operation and reliable interaction with other traffic participants. Furthermore, in real situations and long term operation, there is always the possibility that diverse components may fail. This paper deals with possible sensor faults by defining a federated sensor data fusion architecture. The proposed architecture is designed to detect obstacles in an autonomous vehicle’s environment while detecting a faulty sensor using SVM models for fault detection and diagnosis. Experimental results using sensor information from the KITTI dataset confirm the feasibility of the proposed architecture to detect soft and hard faults from a particular sensor. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | EDP Sciences | Place of Publication | Editor | ||
Language | English | Summary Language | English | Original Title | |
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | cidis @ cidis @ | Serial | 42 | ||
Permanent link to this record | |||||
Author | Nayeth I. Solorzano Alcivar, Robert Loor, Stalyn Gonzabay Yagual, & Boris X. Vintimilla | ||||
Title | Statistical Representations of a Dashboard to Monitor Educational Videogames in Natural Language | Type | Conference Article | ||
Year | 2020 | Publication | ETLTC – ACM Chapter: International Conference on Educational Technology, Language and Technical Communication; Fukushima, Japan, 27-31 Enero 2020 | Abbreviated Journal | |
Volume | 77 | Issue | Pages | ||
Keywords | |||||
Abstract | This paper explains how Natural Language (NL) processing by computers, through smart programs as a way of Machine Learning (ML), can represent large sets of quantitative data as written statements. The study recognized the need to improve the implemented web platform using a dashboard in which we collected a set of extensive data to measure assessment factors of using children´s educational games. In this case, applying NL is a strategy to give assessments, build, and display more precise written statements to enhance the understanding of children´s gaming behavior. We propose the development of a new tool to assess the use of written explanations rather than a statistical representation of feedback information for the comprehension of parents and teachers with a lack of primary level knowledge in statistics. Applying fuzzy logic theory, we present verbatim explanations of children´s behavior playing educational videogames as NL interpretation instead of statistical representations. An educational series of digital game applications for mobile devices, identified as MIDI (Spanish acronym of “Interactive Didactic Multimedia for Children”) linked to a dashboard in the cloud, is evaluated using the dashboard metrics. MIDI games tested in local primary schools helps to evaluate the results of using the proposed tool. The guiding results allow analyzing the degrees of playability and usability factors obtained from the data produced when children play a MIDI game. The results obtained are presented in a comprehensive guiding evaluation report applying NL for parents and teachers. These guiding evaluations are useful to enhance children's learning understanding related to the school curricula applied to ludic digital games. |
||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | cidis @ cidis @ | Serial | 131 | ||
Permanent link to this record | |||||
Author | Rafael E. Rivadeneira; Angel D. Sappa; Boris X. Vintimilla; Lin Guo; Jiankun Hou; Armin Mehri; Parichehr Behjati; Ardakani Heena Patel; Vishal Chudasama; Kalpesh Prajapati; Kishor P. Upla; Raghavendra Ramachandra; Kiran Raja; Christoph Busch; Feras Almasri; Olivier Debeir; Sabari Nathan; Priya Kansal; Nolan Gutierrez; Bardia Mojra; William J. Beksi | ||||
Title | Thermal Image Super-Resolution Challenge – PBVS 2020 | Type | Conference Article | ||
Year | 2020 | Publication | The 16th IEEE Workshop on Perception Beyond the Visible Spectrum on the Conference on Computer Vision and Pattern Recongnition (CVPR 2020) | Abbreviated Journal | |
Volume | 2020-June | Issue | 9151059 | Pages | 432-439 |
Keywords | |||||
Abstract | This paper summarizes the top contributions to the first challenge on thermal image super-resolution (TISR) which was organized as part of the Perception Beyond the Visible Spectrum (PBVS) 2020 workshop. In this challenge, a novel thermal image dataset is considered together with stateof-the-art approaches evaluated under a common framework. The dataset used in the challenge consists of 1021 thermal images, obtained from three distinct thermal cameras at different resolutions (low-resolution, mid-resolution, and high-resolution), resulting in a total of 3063 thermal images. From each resolution, 951 images are used for training and 50 for testing while the 20 remaining images are used for two proposed evaluations. The first evaluation consists of downsampling the low-resolution, midresolution, and high-resolution thermal images by x2, x3 and x4 respectively, and comparing their super-resolution results with the corresponding ground truth images. The second evaluation is comprised of obtaining the x2 superresolution from a given mid-resolution thermal image and comparing it with the corresponding semi-registered highresolution thermal image. Out of 51 registered participants, 6 teams reached the final validation phase. |
||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | English | Summary Language | Original Title | ||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | 21607508 | ISBN | 978-172819360-1 | Medium | |
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | cidis @ cidis @ | Serial | 123 | ||
Permanent link to this record | |||||
Author | Rafael E. Rivadeneira, Angel D. Sappa, Boris X. Vintimilla, Chenyang Wang, Junjun Jiang, Xianming Liu, Zhiwei Zhong, Dai Bin, Li Ruodi, Li Shengye | ||||
Title | Thermal Image Super-Resolution Challenge Results – PBVS 2023 | Type | Conference Article | ||
Year | 2023 | Publication | 19th IEEE Workshop on Perception Beyond the Visible Spectrum de la Conferencia Computer Vision & Pattern Recognition (CVPR 2023) Vancouver, 18-28 junio 2023 | Abbreviated Journal | |
Volume | 2023-June | Issue | Pages | 470 - 478 | |
Keywords | |||||
Abstract | |||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | 21607508 | ISBN | 979-835030249-3 | Medium | |
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | cidis @ cidis @ | Serial | 210 | ||
Permanent link to this record | |||||
Author | Rafael E. Rivadeneira, Angel D. Sappa, Boris X. Vintimilla, Jin Kim, Dogun Kim et al. | ||||
Title | Thermal Image Super-Resolution Challenge Results- PBVS 2022. | Type | Conference Article | ||
Year | 2022 | Publication | Computer Vision and Pattern Recognition Workshops, (CVPRW 2022), junio 19-24. | Abbreviated Journal | CONFERENCE |
Volume | 2022-June | Issue | Pages | 349-357 | |
Keywords | |||||
Abstract | This paper presents results from the third Thermal Image Super-Resolution (TISR) challenge organized in the Perception Beyond the Visible Spectrum (PBVS) 2022 workshop. The challenge uses the same thermal image dataset as the first two challenges, with 951 training images and 50 validation images at each resolution. A set of 20 images was kept aside for testing. The evaluation tasks were to measure the PSNR and SSIM between the SR image and the ground truth (HR thermal noisy image downsampled by four), and also to measure the PSNR and SSIM between the SR image and the semi-registered HR image (acquired with another camera). The results outperformed those from last year’s challenge, improving both evaluation metrics. This year, almost 100 teams participants registered for the challenge, showing the community’s interest in this hot topic. |
||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | cidis @ cidis @ | Serial | 175 | ||
Permanent link to this record | |||||
Author | Rafael E. Rivadeneira; Angel D. Sappa; Boris X. Vintimilla | ||||
Title | Thermal Image Super-Resolution: a Novel Architecture and Dataset | Type | Conference Article | ||
Year | 2020 | Publication | The 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2020); Valletta, Malta; 27-29 Febrero 2020 | Abbreviated Journal | |
Volume | 4 | Issue | Pages | 111-119 | |
Keywords | Thermal images, Far Infrared, Dataset, Super-Resolution. | ||||
Abstract | This paper proposes a novel CycleGAN architecture for thermal image super-resolution, together with a large dataset consisting of thermal images at different resolutions. The dataset has been acquired using three thermal cameras at different resolutions, which acquire images from the same scenario at the same time. The thermal cameras are mounted in rig trying to minimize the baseline distance to make easier the registration problem. The proposed architecture is based on ResNet6 as a Generator and PatchGAN as Discriminator. The novelty on the proposed unsupervised super-resolution training (CycleGAN) is possible due to the existence of aforementioned thermal images—images of the same scenario with different resolutions. The proposed approach is evaluated in the dataset and compared with classical bicubic interpolation. The dataset and the network are available. |
||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | 978-989758402-2 | Medium | ||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | gtsi @ user @ | Serial | 121 | ||
Permanent link to this record | |||||
Author | Rafael E. Rivadeneira; Patricia L. Suarez; Angel D. Sappa; Boris X. Vintimilla. | ||||
Title | Thermal Image SuperResolution through Deep Convolutional Neural Network. | Type | Conference Article | ||
Year | 2019 | Publication | 16th International Conference on Image Analysis and Recognition (ICIAR 2019); Waterloo, Canadá | Abbreviated Journal | |
Volume | Issue | Pages | 417-426 | ||
Keywords | |||||
Abstract | Due to the lack of thermal image datasets, a new dataset has been acquired for proposed a superesolution approach using a Deep Convolution Neural Network schema. In order to achieve this image enhancement process a new thermal images dataset is used. Di?erent experiments have been carried out, ?rstly, the proposed architecture has been trained using only images of the visible spectrum, and later it has been trained with images of the thermal spectrum, the results showed that with the network trained with thermal images, better results are obtained in the process of enhancing the images, maintaining the image details and perspective. The thermal dataset is available at http://www.cidis.espol.edu.ec/es/dataset | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | gtsi @ user @ | Serial | 103 | ||
Permanent link to this record | |||||
Author | Emmanuel F. Morán, Boris X. Vintimilla, Miguel A. Realpe | ||||
Title | Towards a Robust Solution for the Supermarket Shelf Audit Problem: Obsolete Price Tags in Shelves | Type | Conference Article | ||
Year | 2024 | Publication | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 26th Iberoamerican Congress on Pattern Recognition, CIARP 2023 Coimbra 27 – 30 November 2023 | Abbreviated Journal | |
Volume | Vol. 14470 | Issue | Pages | 257–271 | |
Keywords | |||||
Abstract | |||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | 03029743 | ISBN | 978-303149017-0 | Medium | |
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | cidis @ cidis @ | Serial | 249 | ||
Permanent link to this record |