toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Milton Mendieta; F. Panchana; B. Andrade; B. Bayot; C. Vaca; Boris X. Vintimilla; Dennis G. Romero pdf  openurl
  Title Organ identification on shrimp histological images: A comparative study considering CNN and feature engineering. Type Conference Article
  Year 2018 Publication (up) IEEE Ecuador Technical Chapters Meeting ETCM 2018. Cuenca, Ecuador Abbreviated Journal  
  Volume Issue Pages 1-6  
  Keywords  
  Abstract The identification of shrimp organs in biology using

histological images is a complex task. Shrimp histological images

poses a big challenge due to their texture and similarity among

classes. Image classification by using feature engineering and

convolutional neural networks (CNN) are suitable methods to

assist biologists when performing organ detection. This work

evaluates the Bag-of-Visual-Words (BOVW) and Pyramid-Bagof-

Words (PBOW) models for image classification leveraging big

data techniques; and transfer learning for the same classification

task by using a pre-trained CNN. A comparative analysis

of these two different techniques is performed, highlighting

the characteristics of both approaches on the shrimp organs

identification problem.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number gtsi @ user @ Serial 87  
Permanent link to this record
 

 
Author Patricia L. Suárez, Angel D. Sappa, Boris X. Vintimilla pdf  openurl
  Title Cycle generative adversarial network: towards a low-cost vegetation index estimation Type Conference Article
  Year 2021 Publication (up) IEEE International Conference on Image Processing (ICIP 2021) Abbreviated Journal  
  Volume 2021-September Issue Pages 2783-2787  
  Keywords CyclicGAN, NDVI, near infrared spectra, instance normalization.  
  Abstract This paper presents a novel unsupervised approach to estimate the Normalized Difference Vegetation Index (NDVI).The NDVI is obtained as the ratio between information from the visible and near infrared spectral bands; in the current work, the NDVI is estimated just from an image of the visible spectrum through a Cyclic Generative Adversarial Network (CyclicGAN). This unsupervised architecture learns to estimate the NDVI index by means of an image translation between the red channel of a given RGB image and the NDVI unpaired index’s image. The translation is obtained by means of a ResNET architecture and a multiple loss function. Experimental results obtained with this unsupervised scheme show the validity of the implemented model. Additionally, comparisons with the state of the art approaches are provided showing improvements with the proposed approach.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number cidis @ cidis @ Serial 164  
Permanent link to this record
 

 
Author Patricia L. Suarez; Angel D. Sappa; Boris X. Vintimilla pdf  url
openurl 
  Title Adaptive Harris Corners Detector Evaluated with Cross-Spectral Images Type Conference Article
  Year 2018 Publication (up) International Conference on Information Technology & Systems (ICITS 2018). ICITS 2018. Advances in Intelligent Systems and Computing Abbreviated Journal  
  Volume 721 Issue Pages  
  Keywords  
  Abstract This paper proposes a novel approach to use cross-spectral

images to achieve a better performance with the proposed Adaptive Harris

corner detector comparing its obtained results with those achieved

with images of the visible spectra. The images of urban, field, old-building

and country category were used for the experiments, given the variety of

the textures present in these images, with which the complexity of the

proposal is much more challenging for its verification. It is a new scope,

which means improving the detection of characteristic points using crossspectral

images (NIR, G, B) and applying pruning techniques, the combination

of channels for this fusion is the one that generates the largest

variance based on the intensity of the merged pixels, therefore, it is that

which maximizes the entropy in the resulting Cross-spectral images.

Harris is one of the most widely used corner detection algorithm, so

any improvement in its efficiency is an important contribution in the

field of computer vision. The experiments conclude that the inclusion of

a (NIR) channel in the image as a result of the combination of the spectra,

greatly improves the corner detection due to better entropy of the

resulting image after the fusion, Therefore the fusion process applied to

the images improves the results obtained in subsequent processes such as

identification of objects or patterns, classification and/or segmentation.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes 1 Approved no  
  Call Number gtsi @ user @ Serial 84  
Permanent link to this record
 

 
Author Miguel Realpe; Boris X. Vintimilla; Ljubo Vlacic pdf  openurl
  Title Multi-sensor Fusion Module in a Fault Tolerant Perception System for Autonomous Vehicles Type Journal Article
  Year 2016 Publication (up) Journal of Automation and Control Engineering (JOACE) Abbreviated Journal  
  Volume Vol. 4 Issue Pages pp. 430-436  
  Keywords Fault Tolerance, Data Fusion, Multi-sensor Fusion, Autonomous Vehicles, Perception System  
  Abstract Driverless vehicles are currently being tested on public roads in order to examine their ability to perform in a safe and reliable way in real world situations. However, the long-term reliable operation of a vehicle’s diverse sensors and the effects of potential sensor faults in the vehicle system have not been tested yet. This paper is proposing a sensor fusion architecture that minimizes the influence of a sensor fault. Experimental results are presented simulating faults by introducing displacements in the sensor information from the KITTI dataset.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number cidis @ cidis @ Serial 51  
Permanent link to this record
 

 
Author Marjorie Chalen; Boris X. Vintimilla pdf  openurl
  Title Towards Action Prediction Applying Deep Learning Type Journal Article
  Year 2019 Publication (up) Latin American Conference on Computational Intelligence (LA-CCI); Guayaquil, Ecuador; 11-15 Noviembre 2019 Abbreviated Journal  
  Volume Issue Pages pp. 1-3  
  Keywords action prediction, early recognition, early detec- tion, action anticipation, cnn, deep learning, rnn, lstm.  
  Abstract Considering the incremental development future action prediction by video analysis task of computer vision where it is done based upon incomplete action executions. Deep learning is playing an important role in this task framework. Thus, this paper describes recently techniques and pertinent datasets utilized in human action prediction task.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number cidis @ cidis @ Serial 129  
Permanent link to this record
 

 
Author Emmanuel F. Morán, Boris X. Vintimilla, Miguel A. Realpe pdf  url
doi  isbn
openurl 
  Title Towards a Robust Solution for the Supermarket Shelf Audit Problem: Obsolete Price Tags in Shelves Type Conference Article
  Year 2024 Publication (up) Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 26th Iberoamerican Congress on Pattern Recognition, CIARP 2023 Coimbra 27 – 30 November 2023 Abbreviated Journal  
  Volume Vol. 14470 Issue Pages 257–271  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 03029743 ISBN 978-303149017-0 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number cidis @ cidis @ Serial 249  
Permanent link to this record
 

 
Author Rafael E. Rivadeneira, Angel D. Sappa and Boris X. Vintimilla pdf  openurl
  Title Multi-Image Super-Resolution for Thermal Images. Type Conference Article
  Year 2022 Publication (up) Proceedings of the International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications VISIGRAPP 2022 Abbreviated Journal  
  Volume 4 Issue Pages 635 - 642  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number cidis @ cidis @ Serial 181  
Permanent link to this record
 

 
Author Jorge L. Charco, Angel D. Sappa, Boris X. Vintimilla pdf  openurl
  Title Human Pose Estimation through A Novel Multi-View Scheme Type Conference Article
  Year 2022 Publication (up) Proceedings of the International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications VISIGRAPP 2022 Abbreviated Journal  
  Volume 5 Issue Pages 855-862  
  Keywords Multi-View Scheme, Human Pose Estimation, Relative Camera Pose, Monocular Approach  
  Abstract This paper presents a multi-view scheme to tackle the challenging problem of the self-occlusion in human

pose estimation problem. The proposed approach first obtains the human body joints of a set of images,

which are captured from different views at the same time. Then, it enhances the obtained joints by using a

multi-view scheme. Basically, the joints from a given view are used to enhance poorly estimated joints from

another view, especially intended to tackle the self occlusions cases. A network architecture initially proposed

for the monocular case is adapted to be used in the proposed multi-view scheme. Experimental results and

comparisons with the state-of-the-art approaches on Human3.6m dataset are presented showing improvements

in the accuracy of body joints estimations.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number cidis @ cidis @ Serial 169  
Permanent link to this record
 

 
Author Ma. Paz Velarde; Erika Perugachi; Dennis G. Romero; Ángel D. Sappa; Boris X. Vintimilla pdf  url
openurl 
  Title Análisis del movimiento de las extremidades superiores aplicado a la rehabilitación física de una persona usando técnicas de visión artificial. Type Journal Article
  Year 2015 Publication (up) Revista Tecnológica ESPOL-RTE Abbreviated Journal  
  Volume Vol. 28 Issue Pages pp. 1-7  
  Keywords Rehabilitation; RGB-D Sensor; Computer Vision; Upper limb  
  Abstract Comúnmente durante la rehabilitación física, el diagnóstico dado por el especialista se basa en observaciones cualitativas que sugieren, en algunos casos, conclusiones subjetivas. El presente trabajo propone un enfoque cuantitativo, orientado a servir de ayuda a fisioterapeutas, a través de una herramienta interactiva y de bajo costo que permite medir los movimientos de miembros superiores. Estos movimientos son capturados por un sensor RGB-D y procesados mediante la metodología propuesta, dando como resultado una eficiente representación de movimientos, permitiendo la evaluación cuantitativa de movimientos de los miembros superiores.  
  Address  
  Corporate Author Thesis  
  Publisher ESPOL Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number cidis @ cidis @ Serial 39  
Permanent link to this record
 

 
Author Angel D. Sappa; Cristhian A. Aguilera; Juan A. Carvajal Ayala; Miguel Oliveira; Dennis Romero; Boris X. Vintimilla; Ricardo Toledo pdf  url
doi  openurl
  Title Monocular visual odometry: a cross-spectral image fusion based approach Type Journal Article
  Year 2016 Publication (up) Robotics and Autonomous Systems Journal Abbreviated Journal  
  Volume Vol. 86 Issue Pages pp. 26-36  
  Keywords Monocular visual odometry LWIR-RGB cross-spectral imaging Image fusion  
  Abstract This manuscript evaluates the usage of fused cross-spectral images in a monocular visual odometry approach. Fused images are obtained through a Discrete Wavelet Transform (DWT) scheme, where the best setup is em- pirically obtained by means of a mutual information based evaluation met- ric. The objective is to have a exible scheme where fusion parameters are adapted according to the characteristics of the given images. Visual odom- etry is computed from the fused monocular images using an off the shelf approach. Experimental results using data sets obtained with two different platforms are presented. Additionally, comparison with a previous approach as well as with monocular-visible/infrared spectra are also provided showing the advantages of the proposed scheme.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Enlgish Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number cidis @ cidis @ Serial 54  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: