Home | << 1 2 3 4 5 >> |
![]() |
Records | |||||
---|---|---|---|---|---|
Author | Patricia L. Suarez; Angel D. Sappa; Boris X. Vintimilla | ||||
Title | Colorizing Infrared Images through a Triplet Condictional DCGAN Architecture | Type | Conference Article | ||
Year | 2017 | Publication | 19th International Conference on Image Analysis and Processing. | Abbreviated Journal | |
Volume | Issue | Pages | 287-297 | ||
Keywords | |||||
Abstract | |||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes ![]() |
Approved | no | |||
Call Number | gtsi @ user @ | Serial | 66 | ||
Permanent link to this record | |||||
Author | Patricia L. Suarez; Angel D. Sappa; Boris X. Vintimilla | ||||
Title | Learning Image Vegetation Index through a Conditional Generative Adversarial Network | Type | Conference Article | ||
Year | 2017 | Publication | 2nd IEEE Ecuador Tehcnnical Chapters Meeting (ETCM) | Abbreviated Journal | |
Volume | Issue | Pages | |||
Keywords | |||||
Abstract | |||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes ![]() |
Approved | no | |||
Call Number | gtsi @ user @ | Serial | 70 | ||
Permanent link to this record | |||||
Author | Milton Mendieta; F. Panchana; B. Andrade; B. Bayot; C. Vaca; Boris X. Vintimilla; Dennis G. Romero | ||||
Title | Organ identification on shrimp histological images: A comparative study considering CNN and feature engineering. | Type | Conference Article | ||
Year | 2018 | Publication | IEEE Ecuador Technical Chapters Meeting ETCM 2018. Cuenca, Ecuador | Abbreviated Journal | |
Volume | Issue | Pages | 1-6 | ||
Keywords | |||||
Abstract | The identification of shrimp organs in biology using histological images is a complex task. Shrimp histological images poses a big challenge due to their texture and similarity among classes. Image classification by using feature engineering and convolutional neural networks (CNN) are suitable methods to assist biologists when performing organ detection. This work evaluates the Bag-of-Visual-Words (BOVW) and Pyramid-Bagof- Words (PBOW) models for image classification leveraging big data techniques; and transfer learning for the same classification task by using a pre-trained CNN. A comparative analysis of these two different techniques is performed, highlighting the characteristics of both approaches on the shrimp organs identification problem. |
||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes ![]() |
Approved | no | |||
Call Number | gtsi @ user @ | Serial | 87 | ||
Permanent link to this record | |||||
Author | Patricia L. Suarez; Angel D. Sappa; Boris X. Vintimilla; Riad I. Hammoud | ||||
Title | Deep Learning based Single Image Dehazing | Type | Conference Article | ||
Year | 2018 | Publication | 14th IEEE Workshop on Perception Beyond the Visible Spectrum – In conjunction with CVPR 2018. Salt Lake City, Utah. USA | Abbreviated Journal | |
Volume | Issue | Pages | |||
Keywords | |||||
Abstract | This paper proposes a novel approach to remove haze degradations in RGB images using a stacked conditional Generative Adversarial Network (GAN). It employs a triplet of GAN to remove the haze on each color channel independently. A multiple loss functions scheme, applied over a conditional probabilistic model, is proposed. The proposed GAN architecture learns to remove the haze, using as conditioned entrance, the images with haze from which the clear images will be obtained. Such formulation ensures a fast model training convergence and a homogeneous model generalization. Experiments showed that the proposed method generates high-quality clear images. |
||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes ![]() |
Approved | no | |||
Call Number | gtsi @ user @ | Serial | 83 | ||
Permanent link to this record | |||||
Author | Patricia L. Suarez; Angel D. Sappa; Boris X. Vintimilla | ||||
Title | Vegetation Index Estimation from Monospectral Images | Type | Conference Article | ||
Year | 2018 | Publication | 15th International Conference, Image Analysis and Recognition (ICIAR 2018), Póvoa de Varzim, Portugal. Lecture Notes in Computer Science | Abbreviated Journal | |
Volume | 10882 | Issue | Pages | 353-362 | |
Keywords | |||||
Abstract | This paper proposes a novel approach to estimate Normalized Difference Vegetation Index (NDVI) from just the red channel of a RGB image. The NDVI index is defined as the ratio of the difference of the red and infrared radiances over their sum. In other words, information from the red channel of a RGB image and the corresponding infrared spectral band are required for its computation. In the current work the NDVI index is estimated just from the red channel by training a Conditional Generative Adversarial Network (CGAN). The architecture proposed for the generative network consists of a single level structure, which combines at the final layer results from convolutional operations together with the given red channel with Gaussian noise to enhance details, resulting in a sharp NDVI image. Then, the discriminative model estimates the probability that the NDVI generated index came from the training dataset, rather than the index automatically generated. Experimental results with a large set of real images are provided showing that a Conditional GAN single level model represents an acceptable approach to estimate NDVI index. |
||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes ![]() |
Approved | no | |||
Call Number | gtsi @ user @ | Serial | 82 | ||
Permanent link to this record | |||||
Author | Patricia L. Suarez; Angel D. Sappa; Boris X. Vintimilla; Riad I. Hammoud | ||||
Title | Near InfraRed Imagery Colorization | Type | Conference Article | ||
Year | 2018 | Publication | 25 th IEEE International Conference on Image Processing, ICIP 2018 | Abbreviated Journal | |
Volume | Issue | Pages | 2237-2241 | ||
Keywords | |||||
Abstract | This paper proposes a stacked conditional Generative Adversarial Network-based method for Near InfraRed (NIR) imagery colorization. We propose a variant architecture of Generative Adversarial Network (GAN) that uses multiple loss functions over a conditional probabilistic generative model. We show that this new architecture/loss-function yields better generalization and representation of the generated colored IR images. The proposed approach is evaluated on a large test dataset and compared to recent state of the art methods using standard metrics.1 Index Terms—Convolutional Neural Networks (CNN), Generative Adversarial Network (GAN), Infrared Imagery colorization. |
||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes ![]() |
Approved | no | |||
Call Number | gtsi @ user @ | Serial | 81 | ||
Permanent link to this record | |||||
Author | Patricia L. Suarez; Angel D. Sappa; Boris X. Vintimilla | ||||
Title | Cross-spectral image dehaze through a dense stacked conditional GAN based approach. | Type | Conference Article | ||
Year | 2018 | Publication | 14th IEEE International Conference on Signal Image Technology & Internet based Systems (SITIS 2018) | Abbreviated Journal | |
Volume | Issue | Pages | 358-364 | ||
Keywords | |||||
Abstract | This paper proposes a novel approach to remove haze from RGB images using a near infrared images based on a dense stacked conditional Generative Adversarial Network (CGAN). The architecture of the deep network implemented receives, besides the images with haze, its corresponding image in the near infrared spectrum, which serve to accelerate the learning process of the details of the characteristics of the images. The model uses a triplet layer that allows the independence learning of each channel of the visible spectrum image to remove the haze on each color channel separately. A multiple loss function scheme is proposed, which ensures balanced learning between the colors and the structure of the images. Experimental results have shown that the proposed method effectively removes the haze from the images. Additionally, the proposed approach is compared with a state of the art approach showing better results. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes ![]() |
Approved | no | |||
Call Number | gtsi @ user @ | Serial | 92 | ||
Permanent link to this record | |||||
Author | Dennis G. Romero; A. F. Neto; T. F. Bastos; Boris X. Vintimilla | ||||
Title | RWE patterns extraction for on-line human action recognition through window-based analysis of invariant moments | Type | Conference Article | ||
Year | 2012 | Publication | 5th Workshop in applied Robotics and Automation (RoboControl) | Abbreviated Journal | |
Volume | Issue | Pages | |||
Keywords | Human action recognition, Relative Wavelet Energy, Window-based temporal analysis. | ||||
Abstract | This paper presents a method for on-line human action recognition on video sequences. An analysis based on Mahalanobis distance is performed to identify the “idle” state, which defines the beginning and end of the person movement, for posterior patterns extraction based on Relative Wavelet Energy from sequences of invariant moments. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | English | Summary Language | English | Original Title | |
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes ![]() |
Approved | no | |||
Call Number | cidis @ cidis @ | Serial | 23 | ||
Permanent link to this record | |||||
Author | Dennis G. Romero; A. F. Neto; T. F. Bastos; Boris X. Vintimilla | ||||
Title | An approach to automatic assistance in physiotherapy based on on-line movement identification. | Type | Conference Article | ||
Year | 2012 | Publication | VI Andean Region International Conference – ANDESCON 2012 | Abbreviated Journal | |
Volume | Issue | Pages | |||
Keywords | patient rehabilitation, patient treatment, statistical analysis | ||||
Abstract | This paper describes a method for on-line movement identification, oriented to patient’s movement evaluation during physiotherapy. An analysis based on Mahalanobis distance between temporal windows is performed to identify the “idle/motion” state, which defines the beginning and end of the patient’s movement, for posterior patterns extraction based on Relative Wavelet Energy from sequences of invariant moments. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | IEEE | Place of Publication | Andean Region International Conference (ANDESCON), 2012 VI | Editor | |
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes ![]() |
Approved | no | |||
Call Number | cidis @ cidis @ | Serial | 24 | ||
Permanent link to this record | |||||
Author | Ricaurte P; Chilán C; Cristhian A. Aguilera; Boris X. Vintimilla; Angel D. Sappa | ||||
Title | Feature Point Descriptors: Infrared and Visible Spectra | Type | Journal Article | ||
Year | 2014 | Publication | Sensors Journal | Abbreviated Journal | |
Volume | Vol. 14 | Issue | Pages | pp. 3690-3701 | |
Keywords | cross-spectral imaging; feature point descriptors | ||||
Abstract | This manuscript evaluates the behavior of classical feature point descriptors when they are used in images from long-wave infrared spectral band and compare them with the results obtained in the visible spectrum. Robustness to changes in rotation, scaling, blur, and additive noise are analyzed using a state of the art framework. Experimental results using a cross-spectral outdoor image data set are presented and conclusions from these experiments are given. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | English | Summary Language | English | Original Title | |
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes ![]() |
Approved | no | |||
Call Number | cidis @ cidis @ | Serial | 28 | ||
Permanent link to this record |