|   | 
Details
   web
Records
Author Kevin E. Muñoz Loberlly N. Salazar Steven S. Araujo Boris X. Vintimilla
Title Detecting and Characterizing Human Interactions to EnhanceHuman-Robot Engagement Type Conference Article
Year 2025 Publication 3rd International Conference on Robotics, Control and Vision Engineering RCVE 2025 Abbreviated Journal
Volume Issue Pages
Keywords (up)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 281
Permanent link to this record
 

 
Author Marjorie Chalen; Boris X. Vintimilla
Title Towards Action Prediction Applying Deep Learning Type Journal Article
Year 2019 Publication Latin American Conference on Computational Intelligence (LA-CCI); Guayaquil, Ecuador; 11-15 Noviembre 2019 Abbreviated Journal
Volume Issue Pages pp. 1-3
Keywords (up) action prediction, early recognition, early detec- tion, action anticipation, cnn, deep learning, rnn, lstm.
Abstract Considering the incremental development future action prediction by video analysis task of computer vision where it is done based upon incomplete action executions. Deep learning is playing an important role in this task framework. Thus, this paper describes recently techniques and pertinent datasets utilized in human action prediction task.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 129
Permanent link to this record
 

 
Author Ricaurte P; Chilán C; Cristhian A. Aguilera; Boris X. Vintimilla; Angel D. Sappa
Title Feature Point Descriptors: Infrared and Visible Spectra Type Journal Article
Year 2014 Publication Sensors Journal Abbreviated Journal
Volume Vol. 14 Issue Pages pp. 3690-3701
Keywords (up) cross-spectral imaging; feature point descriptors
Abstract This manuscript evaluates the behavior of classical feature point descriptors when they are used in images from long-wave infrared spectral band and compare them with the results obtained in the visible spectrum. Robustness to changes in rotation, scaling, blur, and additive noise are analyzed using a state of the art framework. Experimental results using a cross-spectral outdoor image data set are presented and conclusions from these experiments are given.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 28
Permanent link to this record
 

 
Author Patricia L. Suárez, Angel D. Sappa, Boris X. Vintimilla
Title Cycle generative adversarial network: towards a low-cost vegetation index estimation Type Conference Article
Year 2021 Publication IEEE International Conference on Image Processing (ICIP 2021) Abbreviated Journal
Volume 2021-September Issue Pages 2783-2787
Keywords (up) CyclicGAN, NDVI, near infrared spectra, instance normalization.
Abstract This paper presents a novel unsupervised approach to estimate the Normalized Difference Vegetation Index (NDVI).The NDVI is obtained as the ratio between information from the visible and near infrared spectral bands; in the current work, the NDVI is estimated just from an image of the visible spectrum through a Cyclic Generative Adversarial Network (CyclicGAN). This unsupervised architecture learns to estimate the NDVI index by means of an image translation between the red channel of a given RGB image and the NDVI unpaired index’s image. The translation is obtained by means of a ResNET architecture and a multiple loss function. Experimental results obtained with this unsupervised scheme show the validity of the implemented model. Additionally, comparisons with the state of the art approaches are provided showing improvements with the proposed approach.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 164
Permanent link to this record
 

 
Author Dennis G. Romero; A. Frizera; Angel D. Sappa; Boris X. Vintimilla; T.F. Bastos
Title A predictive model for human activity recognition by observing actions and context Type Conference Article
Year 2015 Publication ACIVS 2015 (Advanced Concepts for Intelligent Vision Systems), International Conference on, Catania, Italy, 2015 Abbreviated Journal
Volume Issue Pages 323 - 333
Keywords (up) Edge width, Image blu,r Defocus map, Edge model
Abstract This paper presents a novel model to estimate human activities – a human activity is defined by a set of human actions. The proposed approach is based on the usage of Recurrent Neural Networks (RNN) and Bayesian inference through the continuous monitoring of human actions and its surrounding environment. In the current work human activities are inferred considering not only visual analysis but also additional resources; external sources of information, such as context information, are incorporated to contribute to the activity estimation. The novelty of the proposed approach lies in the way the information is encoded, so that it can be later associated according to a predefined semantic structure. Hence, a pattern representing a given activity can be defined by a set of actions, plus contextual information or other kind of information that could be relevant to describe the activity. Experimental results with real data are provided showing the validity of the proposed approach.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 43
Permanent link to this record
 

 
Author Miguel Realpe; Boris X. Vintimilla; Ljubo Vlacic
Title Multi-sensor Fusion Module in a Fault Tolerant Perception System for Autonomous Vehicles Type Journal Article
Year 2016 Publication Journal of Automation and Control Engineering (JOACE) Abbreviated Journal
Volume Vol. 4 Issue Pages pp. 430-436
Keywords (up) Fault Tolerance, Data Fusion, Multi-sensor Fusion, Autonomous Vehicles, Perception System
Abstract Driverless vehicles are currently being tested on public roads in order to examine their ability to perform in a safe and reliable way in real world situations. However, the long-term reliable operation of a vehicle’s diverse sensors and the effects of potential sensor faults in the vehicle system have not been tested yet. This paper is proposing a sensor fusion architecture that minimizes the influence of a sensor fault. Experimental results are presented simulating faults by introducing displacements in the sensor information from the KITTI dataset.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 51
Permanent link to this record
 

 
Author Miguel Realpe; Boris X. Vintimilla; Ljubo Vlacic
Title A Fault Tolerant Perception system for autonomous vehicles Type Conference Article
Year 2016 Publication 35th Chinese Control Conference (CCC2016), International Conference on, Chengdu Abbreviated Journal
Volume Issue Pages 1-6
Keywords (up) Fault Tolerant Perception, Sensor Data Fusion, Fault Tolerance, Autonomous Vehicles, Federated Architecture
Abstract Driverless vehicles are currently being tested on public roads in order to examine their ability to perform in a safe and reliable way in real world situations. However, the long-term reliable operation of a vehicle’s diverse sensors and the effects of potential sensor faults in the vehicle system have not been tested yet. This paper is proposing a sensor fusion architecture that minimizes the influence of a sensor fault. Experimental results are presented simulating faults by introducing displacements in the sensor information from the KITTI dataset.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 52
Permanent link to this record
 

 
Author Dennis G. Romero; A. F. Neto; T. F. Bastos; Boris X. Vintimilla
Title RWE patterns extraction for on-line human action recognition through window-based analysis of invariant moments Type Conference Article
Year 2012 Publication 5th Workshop in applied Robotics and Automation (RoboControl) Abbreviated Journal
Volume Issue Pages
Keywords (up) Human action recognition, Relative Wavelet Energy, Window-based temporal analysis.
Abstract This paper presents a method for on-line human action recognition on video sequences. An analysis based on Mahalanobis distance is performed to identify the “idle” state, which defines the beginning and end of the person movement, for posterior patterns extraction based on Relative Wavelet Energy from sequences of invariant moments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 23
Permanent link to this record
 

 
Author Angel D. Sappa; Juan A. Carvajal; Cristhian A. Aguilera; Miguel Oliveira; Dennis G. Romero; Boris X. Vintimilla
Title Wavelet-Based Visible and Infrared Image Fusion: A Comparative Study Type Journal Article
Year 2016 Publication Sensors Journal Abbreviated Journal
Volume Vol. 16 Issue Pages pp. 1-15
Keywords (up) image fusion; fusion evaluation metrics; visible and infrared imaging; discrete wavelet transform
Abstract This paper evaluates different wavelet-based cross-spectral image fusion strategies adopted to merge visible and infrared images. The objective is to find the best setup independently of the evaluation metric used to measure the performance. Quantitative performance results are obtained with state of the art approaches together with adaptations proposed in the current work. The options evaluated in the current work result from the combination of different setups in the wavelet image decomposition stage together with different fusion strategies for the final merging stage that generates the resulting representation. Most of the approaches evaluate results according to the application for which they are intended for. Sometimes a human observer is selected to judge the quality of the obtained results. In the current work, quantitative values are considered in order to find correlations between setups and performance of obtained results; these correlations can be used to define a criteria for selecting the best fusion strategy for a given pair of cross-spectral images. The whole procedure is evaluated with a large set of correctly registered visible and infrared image pairs, including both Near InfraRed (NIR) and LongWave InfraRed (LWIR).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 47
Permanent link to this record
 

 
Author Angel D. Sappa; Cristhian A. Aguilera; Juan A. Carvajal Ayala; Miguel Oliveira; Dennis Romero; Boris X. Vintimilla; Ricardo Toledo
Title Monocular visual odometry: a cross-spectral image fusion based approach Type Journal Article
Year 2016 Publication Robotics and Autonomous Systems Journal Abbreviated Journal
Volume Vol. 86 Issue Pages pp. 26-36
Keywords (up) Monocular visual odometry LWIR-RGB cross-spectral imaging Image fusion
Abstract This manuscript evaluates the usage of fused cross-spectral images in a monocular visual odometry approach. Fused images are obtained through a Discrete Wavelet Transform (DWT) scheme, where the best setup is em- pirically obtained by means of a mutual information based evaluation met- ric. The objective is to have a exible scheme where fusion parameters are adapted according to the characteristics of the given images. Visual odom- etry is computed from the fused monocular images using an off the shelf approach. Experimental results using data sets obtained with two different platforms are presented. Additionally, comparison with a previous approach as well as with monocular-visible/infrared spectra are also provided showing the advantages of the proposed scheme.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Enlgish Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 54
Permanent link to this record