|
Records |
Links |
|
Author |
Patricia L. Suarez; Angel D. Sappa; Boris X. Vintimilla |
|
|
Title |
Image patch similarity through a meta-learning metric based approach |
Type |
Conference Article |
|
Year |
2019 |
Publication |
15th International Conference on Signal Image Technology & Internet based Systems (SITIS 2019); Sorrento, Italia |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
511-517 |
|
|
Keywords |
|
|
|
Abstract |
Comparing images regions are one of the core methods used on computer vision for tasks like image classification, scene understanding, object detection and recognition. Hence, this paper proposes a novel approach to determine similarity of image regions (patches), in order to obtain the best representation of image patches. This problem has been studied by many researchers presenting different approaches, however, the ability to find the better criteria to measure the similarity on image regions are still a challenge. The present work tackles this problem using a few-shot metric based meta-learning framework able to compare image regions and determining a similarity measure to decide if there is similarity between the compared patches. Our model is training end-to-end from scratch. Experimental results
have shown that the proposed approach effectively estimates the similarity of the patches and, comparing it with the state of the art approaches, shows better results. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
gtsi @ user @ |
Serial |
115 |
|
Permanent link to this record |
|
|
|
|
Author |
Jorge L. Charco; Angel D. Sappa; Boris X. Vintimilla; Henry O. Velesaca |
|
|
Title |
Transfer Learning from Synthetic Data in the Camera Pose Estimation Problem |
Type |
Conference Article |
|
Year |
2020 |
Publication |
The 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2020); Valletta, Malta; 27-29 Febrero 2020 |
Abbreviated Journal |
|
|
|
Volume |
4 |
Issue |
|
Pages |
498-505 |
|
|
Keywords |
Relative Camera Pose Estimation, Siamese Architecture, Synthetic Data, Deep Learning, Multi-View Environments, Extrinsic Camera Parameters. |
|
|
Abstract |
This paper presents a novel Siamese network architecture, as a variant of Resnet-50, to estimate the relative camera pose on multi-view environments. In order to improve the performance of the proposed model
a transfer learning strategy, based on synthetic images obtained from a virtual-world, is considered. The
transfer learning consist of first training the network using pairs of images from the virtual-world scenario
considering different conditions (i.e., weather, illumination, objects, buildings, etc.); then, the learned weight
of the network are transferred to the real case, where images from real-world scenarios are considered. Experimental results and comparisons with the state of the art show both, improvements on the relative pose
estimation accuracy using the proposed model, as well as further improvements when the transfer learning
strategy (synthetic-world data – transfer learning – real-world data) is considered to tackle the limitation on
the training due to the reduced number of pairs of real-images on most of the public data sets. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-989758402-2 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
gtsi @ user @ |
Serial |
120 |
|
Permanent link to this record |
|
|
|
|
Author |
Rafael E. Rivadeneira; Angel D. Sappa; Boris X. Vintimilla |
|
|
Title |
Thermal Image Super-Resolution: a Novel Architecture and Dataset |
Type |
Conference Article |
|
Year |
2020 |
Publication |
The 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2020); Valletta, Malta; 27-29 Febrero 2020 |
Abbreviated Journal |
|
|
|
Volume |
4 |
Issue |
|
Pages |
111-119 |
|
|
Keywords |
Thermal images, Far Infrared, Dataset, Super-Resolution. |
|
|
Abstract |
This paper proposes a novel CycleGAN architecture for thermal image super-resolution, together with a large
dataset consisting of thermal images at different resolutions. The dataset has been acquired using three thermal
cameras at different resolutions, which acquire images from the same scenario at the same time. The thermal
cameras are mounted in rig trying to minimize the baseline distance to make easier the registration problem.
The proposed architecture is based on ResNet6 as a Generator and PatchGAN as Discriminator. The novelty
on the proposed unsupervised super-resolution training (CycleGAN) is possible due to the existence of aforementioned thermal images—images of the same scenario with different resolutions. The proposed approach
is evaluated in the dataset and compared with classical bicubic interpolation. The dataset and the network are
available. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-989758402-2 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
gtsi @ user @ |
Serial |
121 |
|
Permanent link to this record |
|
|
|
|
Author |
Rafael E. Rivadeneira; Angel D. Sappa; Boris X. Vintimilla; Lin Guo; Jiankun Hou; Armin Mehri; Parichehr Behjati; Ardakani Heena Patel; Vishal Chudasama; Kalpesh Prajapati; Kishor P. Upla; Raghavendra Ramachandra; Kiran Raja; Christoph Busch; Feras Almasri; Olivier Debeir; Sabari Nathan; Priya Kansal; Nolan Gutierrez; Bardia Mojra; William J. Beksi |
|
|
Title |
Thermal Image Super-Resolution Challenge – PBVS 2020 |
Type |
Conference Article |
|
Year |
2020 |
Publication |
The 16th IEEE Workshop on Perception Beyond the Visible Spectrum on the Conference on Computer Vision and Pattern Recongnition (CVPR 2020) |
Abbreviated Journal |
|
|
|
Volume |
2020-June |
Issue |
9151059 |
Pages |
432-439 |
|
|
Keywords |
|
|
|
Abstract |
This paper summarizes the top contributions to the first challenge on thermal image super-resolution (TISR) which was organized as part of the Perception Beyond the Visible Spectrum (PBVS) 2020 workshop. In this challenge, a novel thermal image dataset is considered together with stateof-the-art approaches evaluated under a common framework.
The dataset used in the challenge consists of 1021 thermal images, obtained from three distinct thermal cameras at different resolutions (low-resolution, mid-resolution, and high-resolution), resulting in a total of 3063 thermal images. From each resolution, 951 images are used for training and 50 for testing while the 20 remaining images are used for two proposed evaluations. The first evaluation consists of downsampling the low-resolution, midresolution, and high-resolution thermal images by x2, x3 and x4 respectively, and comparing their super-resolution
results with the corresponding ground truth images. The second evaluation is comprised of obtaining the x2 superresolution from a given mid-resolution thermal image and comparing it with the corresponding semi-registered highresolution thermal image. Out of 51 registered participants, 6 teams reached the final validation phase. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
21607508 |
ISBN |
978-172819360-1 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
cidis @ cidis @ |
Serial |
123 |
|
Permanent link to this record |
|
|
|
|
Author |
Nayeth I. Solorzano Alcivar, Robert Loor, Stalyn Gonzabay Yagual, & Boris X. Vintimilla |
|
|
Title |
Statistical Representations of a Dashboard to Monitor Educational Videogames in Natural Language |
Type |
Conference Article |
|
Year |
2020 |
Publication |
ETLTC – ACM Chapter: International Conference on Educational Technology, Language and Technical Communication; Fukushima, Japan, 27-31 Enero 2020 |
Abbreviated Journal |
|
|
|
Volume |
77 |
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
This paper explains how Natural Language (NL) processing by computers, through smart
programs as a way of Machine Learning (ML), can represent large sets of quantitative data as written
statements. The study recognized the need to improve the implemented web platform using a
dashboard in which we collected a set of extensive data to measure assessment factors of using
children´s educational games. In this case, applying NL is a strategy to give assessments, build, and
display more precise written statements to enhance the understanding of children´s gaming behavior.
We propose the development of a new tool to assess the use of written explanations rather than a
statistical representation of feedback information for the comprehension of parents and teachers with
a lack of primary level knowledge in statistics. Applying fuzzy logic theory, we present verbatim
explanations of children´s behavior playing educational videogames as NL interpretation instead of
statistical representations. An educational series of digital game applications for mobile devices,
identified as MIDI (Spanish acronym of “Interactive Didactic Multimedia for Children”) linked to a
dashboard in the cloud, is evaluated using the dashboard metrics. MIDI games tested in local primary
schools helps to evaluate the results of using the proposed tool. The guiding results allow analyzing
the degrees of playability and usability factors obtained from the data produced when children play a
MIDI game. The results obtained are presented in a comprehensive guiding evaluation report
applying NL for parents and teachers. These guiding evaluations are useful to enhance children's
learning understanding related to the school curricula applied to ludic digital games. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
cidis @ cidis @ |
Serial |
131 |
|
Permanent link to this record |
|
|
|
|
Author |
Patricia L. Suárez, Angel D. Sappa and Boris X. Vintimilla |
|
|
Title |
Deep learning-based vegetation index estimation |
Type |
Book Chapter |
|
Year |
2021 |
Publication |
Generative Adversarial Networks for Image-to-Image Translation Book. |
Abbreviated Journal |
|
|
|
Volume |
Chapter 9 |
Issue |
Issue 2 |
Pages |
205-232 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
cidis @ cidis @ |
Serial |
137 |
|
Permanent link to this record |
|
|
|
|
Author |
Patricia L. Suárez, Angel D. Sappa, Boris X. Vintimilla |
|
|
Title |
Cycle generative adversarial network: towards a low-cost vegetation index estimation |
Type |
Conference Article |
|
Year |
2021 |
Publication |
IEEE International Conference on Image Processing (ICIP 2021) |
Abbreviated Journal |
|
|
|
Volume |
2021-September |
Issue |
|
Pages |
2783-2787 |
|
|
Keywords |
CyclicGAN, NDVI, near infrared spectra, instance normalization. |
|
|
Abstract |
This paper presents a novel unsupervised approach to estimate the Normalized Difference Vegetation Index (NDVI).The NDVI is obtained as the ratio between information from the visible and near infrared spectral bands; in the current work, the NDVI is estimated just from an image of the visible spectrum through a Cyclic Generative Adversarial Network (CyclicGAN). This unsupervised architecture learns to estimate the NDVI index by means of an image translation between the red channel of a given RGB image and the NDVI unpaired index’s image. The translation is obtained by means of a ResNET architecture and a multiple loss function. Experimental results obtained with this unsupervised scheme show the validity of the implemented model. Additionally, comparisons with the state of the art approaches are provided showing improvements with the proposed approach. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
cidis @ cidis @ |
Serial |
164 |
|
Permanent link to this record |
|
|
|
|
Author |
Rafael E. Rivadeneira, Angel D. Sappa and Boris X. Vintimilla |
|
|
Title |
Multi-Image Super-Resolution for Thermal Images. |
Type |
Conference Article |
|
Year |
2022 |
Publication |
Proceedings of the International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications VISIGRAPP 2022 |
Abbreviated Journal |
|
|
|
Volume |
4 |
Issue |
|
Pages |
635 - 642 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
cidis @ cidis @ |
Serial |
181 |
|
Permanent link to this record |
|
|
|
|
Author |
Rafael E. Rivadeneira, Angel D. Sappa, Boris X. Vintimilla, Jin Kim, Dogun Kim et al. |
|
|
Title |
Thermal Image Super-Resolution Challenge Results- PBVS 2022. |
Type |
Conference Article |
|
Year |
2022 |
Publication |
Computer Vision and Pattern Recognition Workshops, (CVPRW 2022), junio 19-24. |
Abbreviated Journal |
CONFERENCE |
|
|
Volume |
2022-June |
Issue |
|
Pages |
349-357 |
|
|
Keywords |
|
|
|
Abstract |
This paper presents results from the third Thermal Image
Super-Resolution (TISR) challenge organized in the Perception Beyond the Visible Spectrum (PBVS) 2022 workshop.
The challenge uses the same thermal image dataset as the
first two challenges, with 951 training images and 50 validation images at each resolution. A set of 20 images was
kept aside for testing. The evaluation tasks were to measure
the PSNR and SSIM between the SR image and the ground
truth (HR thermal noisy image downsampled by four), and
also to measure the PSNR and SSIM between the SR image
and the semi-registered HR image (acquired with another
camera). The results outperformed those from last year’s
challenge, improving both evaluation metrics. This year,
almost 100 teams participants registered for the challenge,
showing the community’s interest in this hot topic. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
cidis @ cidis @ |
Serial |
175 |
|
Permanent link to this record |
|
|
|
|
Author |
Jorge L. Charco, Angel D. Sappa, Boris X. Vintimilla, Henry O. Velesaca. |
|
|
Title |
Human Body Pose Estimation in Multi-view Environments. |
Type |
Book Chapter |
|
Year |
2022 |
Publication |
ICT Applications for Smart Cities Part of the Intelligent Systems Reference Library book series |
Abbreviated Journal |
BOOK |
|
|
Volume |
224 |
Issue |
|
Pages |
79-99 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
cidis @ cidis @ |
Serial |
197 |
|
Permanent link to this record |