|
Records |
Links |
|
Author |
Patricia L. Suarez; Angel D. Sappa; Boris X. Vintimilla |

|
|
Title |
Adaptive Harris Corners Detector Evaluated with Cross-Spectral Images |
Type |
Conference Article |
|
Year |
2018 |
Publication |
International Conference on Information Technology & Systems (ICITS 2018). ICITS 2018. Advances in Intelligent Systems and Computing |
Abbreviated Journal |
|
|
|
Volume |
721 |
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract  |
This paper proposes a novel approach to use cross-spectral
images to achieve a better performance with the proposed Adaptive Harris
corner detector comparing its obtained results with those achieved
with images of the visible spectra. The images of urban, field, old-building
and country category were used for the experiments, given the variety of
the textures present in these images, with which the complexity of the
proposal is much more challenging for its verification. It is a new scope,
which means improving the detection of characteristic points using crossspectral
images (NIR, G, B) and applying pruning techniques, the combination
of channels for this fusion is the one that generates the largest
variance based on the intensity of the merged pixels, therefore, it is that
which maximizes the entropy in the resulting Cross-spectral images.
Harris is one of the most widely used corner detection algorithm, so
any improvement in its efficiency is an important contribution in the
field of computer vision. The experiments conclude that the inclusion of
a (NIR) channel in the image as a result of the combination of the spectra,
greatly improves the corner detection due to better entropy of the
resulting image after the fusion, Therefore the fusion process applied to
the images improves the results obtained in subsequent processes such as
identification of objects or patterns, classification and/or segmentation. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
1 |
Approved |
no |
|
|
Call Number |
gtsi @ user @ |
Serial |
84 |
|
Permanent link to this record |
|
|
|
|
Author |
Rafael E. Rivadeneira; Angel D. Sappa; Boris X. Vintimilla |

|
|
Title |
Thermal Image Super-Resolution: a Novel Architecture and Dataset |
Type |
Conference Article |
|
Year |
2020 |
Publication |
The 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2020); Valletta, Malta; 27-29 Febrero 2020 |
Abbreviated Journal |
|
|
|
Volume |
4 |
Issue |
|
Pages |
111-119 |
|
|
Keywords |
Thermal images, Far Infrared, Dataset, Super-Resolution. |
|
|
Abstract  |
This paper proposes a novel CycleGAN architecture for thermal image super-resolution, together with a large
dataset consisting of thermal images at different resolutions. The dataset has been acquired using three thermal
cameras at different resolutions, which acquire images from the same scenario at the same time. The thermal
cameras are mounted in rig trying to minimize the baseline distance to make easier the registration problem.
The proposed architecture is based on ResNet6 as a Generator and PatchGAN as Discriminator. The novelty
on the proposed unsupervised super-resolution training (CycleGAN) is possible due to the existence of aforementioned thermal images—images of the same scenario with different resolutions. The proposed approach
is evaluated in the dataset and compared with classical bicubic interpolation. The dataset and the network are
available. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-989758402-2 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
gtsi @ user @ |
Serial |
121 |
|
Permanent link to this record |
|
|
|
|
Author |
Patricia L. Suarez; Angel D. Sappa; Boris X. Vintimilla; Riad I. Hammoud |

|
|
Title |
Near InfraRed Imagery Colorization |
Type |
Conference Article |
|
Year |
2018 |
Publication |
25 th IEEE International Conference on Image Processing, ICIP 2018 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
2237-2241 |
|
|
Keywords |
|
|
|
Abstract  |
This paper proposes a stacked conditional Generative
Adversarial Network-based method for Near InfraRed
(NIR) imagery colorization. We propose a variant architecture
of Generative Adversarial Network (GAN) that uses multiple
loss functions over a conditional probabilistic generative model.
We show that this new architecture/loss-function yields better
generalization and representation of the generated colored IR
images. The proposed approach is evaluated on a large test
dataset and compared to recent state of the art methods using
standard metrics.1
Index Terms—Convolutional Neural Networks (CNN), Generative
Adversarial Network (GAN), Infrared Imagery colorization. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
gtsi @ user @ |
Serial |
81 |
|
Permanent link to this record |
|
|
|
|
Author |
Jorge L. Charco; Boris X. Vintimilla; Angel D. Sappa |

|
|
Title |
Deep learning based camera pose estimation in multi-view environment. |
Type |
Conference Article |
|
Year |
2018 |
Publication |
14th IEEE International Conference on Signal Image Technology & Internet based Systems (SITIS 2018) |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
224-228 |
|
|
Keywords |
|
|
|
Abstract  |
This paper proposes to use a deep learning network architecture for relative camera pose estimation on a multi-view environment. The proposed network is a variant architecture of AlexNet to use as regressor for prediction the relative translation and rotation as output. The proposed approach is trained from scratch on a large data set that takes as input a pair of images from the same scene. This new architecture is compared with a previous approach using standard metrics, obtaining better results on the relative camera pose. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
gtsi @ user @ |
Serial |
93 |
|
Permanent link to this record |
|
|
|
|
Author |
Rafael E. Rivadeneira; Angel D. Sappa; Boris X. Vintimilla; Lin Guo; Jiankun Hou; Armin Mehri; Parichehr Behjati; Ardakani Heena Patel; Vishal Chudasama; Kalpesh Prajapati; Kishor P. Upla; Raghavendra Ramachandra; Kiran Raja; Christoph Busch; Feras Almasri; Olivier Debeir; Sabari Nathan; Priya Kansal; Nolan Gutierrez; Bardia Mojra; William J. Beksi |

|
|
Title |
Thermal Image Super-Resolution Challenge – PBVS 2020 |
Type |
Conference Article |
|
Year |
2020 |
Publication |
The 16th IEEE Workshop on Perception Beyond the Visible Spectrum on the Conference on Computer Vision and Pattern Recongnition (CVPR 2020) |
Abbreviated Journal |
|
|
|
Volume |
2020-June |
Issue |
9151059 |
Pages |
432-439 |
|
|
Keywords |
|
|
|
Abstract  |
This paper summarizes the top contributions to the first challenge on thermal image super-resolution (TISR) which was organized as part of the Perception Beyond the Visible Spectrum (PBVS) 2020 workshop. In this challenge, a novel thermal image dataset is considered together with stateof-the-art approaches evaluated under a common framework.
The dataset used in the challenge consists of 1021 thermal images, obtained from three distinct thermal cameras at different resolutions (low-resolution, mid-resolution, and high-resolution), resulting in a total of 3063 thermal images. From each resolution, 951 images are used for training and 50 for testing while the 20 remaining images are used for two proposed evaluations. The first evaluation consists of downsampling the low-resolution, midresolution, and high-resolution thermal images by x2, x3 and x4 respectively, and comparing their super-resolution
results with the corresponding ground truth images. The second evaluation is comprised of obtaining the x2 superresolution from a given mid-resolution thermal image and comparing it with the corresponding semi-registered highresolution thermal image. Out of 51 registered participants, 6 teams reached the final validation phase. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
21607508 |
ISBN |
978-172819360-1 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
cidis @ cidis @ |
Serial |
123 |
|
Permanent link to this record |