Home | << 1 2 3 4 5 >> |
![]() |
Records | |||||
---|---|---|---|---|---|
Author | Nayeth I. Solorzano Alcivar, Robert Loor, Stalyn Gonzabay Yagual, & Boris X. Vintimilla | ||||
Title | Statistical Representations of a Dashboard to Monitor Educational Videogames in Natural Language | Type | Conference Article | ||
Year | 2020 | Publication | ETLTC – ACM Chapter: International Conference on Educational Technology, Language and Technical Communication; Fukushima, Japan, 27-31 Enero 2020 | Abbreviated Journal | |
Volume | 77 | Issue | Pages | ||
Keywords | |||||
Abstract ![]() |
This paper explains how Natural Language (NL) processing by computers, through smart programs as a way of Machine Learning (ML), can represent large sets of quantitative data as written statements. The study recognized the need to improve the implemented web platform using a dashboard in which we collected a set of extensive data to measure assessment factors of using children´s educational games. In this case, applying NL is a strategy to give assessments, build, and display more precise written statements to enhance the understanding of children´s gaming behavior. We propose the development of a new tool to assess the use of written explanations rather than a statistical representation of feedback information for the comprehension of parents and teachers with a lack of primary level knowledge in statistics. Applying fuzzy logic theory, we present verbatim explanations of children´s behavior playing educational videogames as NL interpretation instead of statistical representations. An educational series of digital game applications for mobile devices, identified as MIDI (Spanish acronym of “Interactive Didactic Multimedia for Children”) linked to a dashboard in the cloud, is evaluated using the dashboard metrics. MIDI games tested in local primary schools helps to evaluate the results of using the proposed tool. The guiding results allow analyzing the degrees of playability and usability factors obtained from the data produced when children play a MIDI game. The results obtained are presented in a comprehensive guiding evaluation report applying NL for parents and teachers. These guiding evaluations are useful to enhance children's learning understanding related to the school curricula applied to ludic digital games. |
||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | cidis @ cidis @ | Serial | 131 | ||
Permanent link to this record | |||||
Author | Dennis G. Romero; A. F. Neto; T. F. Bastos; Boris X. Vintimilla | ||||
Title | RWE patterns extraction for on-line human action recognition through window-based analysis of invariant moments | Type | Conference Article | ||
Year | 2012 | Publication | 5th Workshop in applied Robotics and Automation (RoboControl) | Abbreviated Journal | |
Volume | Issue | Pages | |||
Keywords | Human action recognition, Relative Wavelet Energy, Window-based temporal analysis. | ||||
Abstract ![]() |
This paper presents a method for on-line human action recognition on video sequences. An analysis based on Mahalanobis distance is performed to identify the “idle” state, which defines the beginning and end of the person movement, for posterior patterns extraction based on Relative Wavelet Energy from sequences of invariant moments. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | English | Summary Language | English | Original Title | |
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | cidis @ cidis @ | Serial | 23 | ||
Permanent link to this record | |||||
Author | Jorge L. Charco, Angel D. Sappa, Boris X. Vintimilla | ||||
Title | Human Pose Estimation through A Novel Multi-View Scheme | Type | Conference Article | ||
Year | 2022 | Publication | Proceedings of the International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications VISIGRAPP 2022 | Abbreviated Journal | |
Volume | 5 | Issue | Pages | 855-862 | |
Keywords | Multi-View Scheme, Human Pose Estimation, Relative Camera Pose, Monocular Approach | ||||
Abstract ![]() |
This paper presents a multi-view scheme to tackle the challenging problem of the self-occlusion in human pose estimation problem. The proposed approach first obtains the human body joints of a set of images, which are captured from different views at the same time. Then, it enhances the obtained joints by using a multi-view scheme. Basically, the joints from a given view are used to enhance poorly estimated joints from another view, especially intended to tackle the self occlusions cases. A network architecture initially proposed for the monocular case is adapted to be used in the proposed multi-view scheme. Experimental results and comparisons with the state-of-the-art approaches on Human3.6m dataset are presented showing improvements in the accuracy of body joints estimations. |
||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | yes | |||
Call Number | cidis @ cidis @ | Serial | 169 | ||
Permanent link to this record | |||||
Author | Dennis G. Romero; A. Frizera; Angel D. Sappa; Boris X. Vintimilla; T.F. Bastos | ||||
Title | A predictive model for human activity recognition by observing actions and context | Type | Conference Article | ||
Year | 2015 | Publication | ACIVS 2015 (Advanced Concepts for Intelligent Vision Systems), International Conference on, Catania, Italy, 2015 | Abbreviated Journal | |
Volume | Issue | Pages | 323 - 333 | ||
Keywords | Edge width, Image blu,r Defocus map, Edge model | ||||
Abstract ![]() |
This paper presents a novel model to estimate human activities – a human activity is defined by a set of human actions. The proposed approach is based on the usage of Recurrent Neural Networks (RNN) and Bayesian inference through the continuous monitoring of human actions and its surrounding environment. In the current work human activities are inferred considering not only visual analysis but also additional resources; external sources of information, such as context information, are incorporated to contribute to the activity estimation. The novelty of the proposed approach lies in the way the information is encoded, so that it can be later associated according to a predefined semantic structure. Hence, a pattern representing a given activity can be defined by a set of actions, plus contextual information or other kind of information that could be relevant to describe the activity. Experimental results with real data are provided showing the validity of the proposed approach. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | cidis @ cidis @ | Serial | 43 | ||
Permanent link to this record | |||||
Author | Jorge L. Charco; Angel D. Sappa; Boris X. Vintimilla; Henry O. Velesaca | ||||
Title | Transfer Learning from Synthetic Data in the Camera Pose Estimation Problem | Type | Conference Article | ||
Year | 2020 | Publication | The 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2020); Valletta, Malta; 27-29 Febrero 2020 | Abbreviated Journal | |
Volume | 4 | Issue | Pages | 498-505 | |
Keywords | Relative Camera Pose Estimation, Siamese Architecture, Synthetic Data, Deep Learning, Multi-View Environments, Extrinsic Camera Parameters. | ||||
Abstract ![]() |
This paper presents a novel Siamese network architecture, as a variant of Resnet-50, to estimate the relative camera pose on multi-view environments. In order to improve the performance of the proposed model a transfer learning strategy, based on synthetic images obtained from a virtual-world, is considered. The transfer learning consist of first training the network using pairs of images from the virtual-world scenario considering different conditions (i.e., weather, illumination, objects, buildings, etc.); then, the learned weight of the network are transferred to the real case, where images from real-world scenarios are considered. Experimental results and comparisons with the state of the art show both, improvements on the relative pose estimation accuracy using the proposed model, as well as further improvements when the transfer learning strategy (synthetic-world data – transfer learning – real-world data) is considered to tackle the limitation on the training due to the reduced number of pairs of real-images on most of the public data sets. |
||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | 978-989758402-2 | Medium | ||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | gtsi @ user @ | Serial | 120 | ||
Permanent link to this record | |||||
Author | Patricia L. Suárez, Angel D. Sappa, Boris X. Vintimilla | ||||
Title | Cycle generative adversarial network: towards a low-cost vegetation index estimation | Type | Conference Article | ||
Year | 2021 | Publication | IEEE International Conference on Image Processing (ICIP 2021) | Abbreviated Journal | |
Volume | 2021-September | Issue | Pages | 2783-2787 | |
Keywords | CyclicGAN, NDVI, near infrared spectra, instance normalization. | ||||
Abstract ![]() |
This paper presents a novel unsupervised approach to estimate the Normalized Difference Vegetation Index (NDVI).The NDVI is obtained as the ratio between information from the visible and near infrared spectral bands; in the current work, the NDVI is estimated just from an image of the visible spectrum through a Cyclic Generative Adversarial Network (CyclicGAN). This unsupervised architecture learns to estimate the NDVI index by means of an image translation between the red channel of a given RGB image and the NDVI unpaired index’s image. The translation is obtained by means of a ResNET architecture and a multiple loss function. Experimental results obtained with this unsupervised scheme show the validity of the implemented model. Additionally, comparisons with the state of the art approaches are provided showing improvements with the proposed approach. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | cidis @ cidis @ | Serial | 164 | ||
Permanent link to this record | |||||
Author | Mildred Cruz; Cristhian A. Aguilera; Boris X. Vintimilla; Ricardo Toledo; Ángel D. Sappa | ||||
Title | Cross-spectral image registration and fusion: an evaluation study | Type | Conference Article | ||
Year | 2015 | Publication | 2nd International Conference on Machine Vision and Machine Learning | Abbreviated Journal | |
Volume | 331 | Issue | Pages | ||
Keywords | multispectral imaging; image registration; data fusion; infrared and visible spectra | ||||
Abstract ![]() |
This paper presents a preliminary study on the registration and fusion of cross-spectral imaging. The objective is to evaluate the validity of widely used computer vision approaches when they are applied at different spectral bands. In particular, we are interested in merging images from the infrared (both long wave infrared: LWIR and near infrared: NIR) and visible spectrum (VS). Experimental results with different data sets are presented. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Computer Vision Center | Place of Publication | Barcelona, Spain | Editor | |
Language | English | Summary Language | English | Original Title | |
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | cidis @ cidis @ | Serial | 35 | ||
Permanent link to this record | |||||
Author | Rafael E. Rivadeneira, Angel D. Sappa, Boris X. Vintimilla, Jin Kim, Dogun Kim et al. | ||||
Title | Thermal Image Super-Resolution Challenge Results- PBVS 2022. | Type | Conference Article | ||
Year | 2022 | Publication | Computer Vision and Pattern Recognition Workshops, (CVPRW 2022), junio 19-24. | Abbreviated Journal | CONFERENCE |
Volume | 2022-June | Issue | Pages | 349-357 | |
Keywords | |||||
Abstract ![]() |
This paper presents results from the third Thermal Image Super-Resolution (TISR) challenge organized in the Perception Beyond the Visible Spectrum (PBVS) 2022 workshop. The challenge uses the same thermal image dataset as the first two challenges, with 951 training images and 50 validation images at each resolution. A set of 20 images was kept aside for testing. The evaluation tasks were to measure the PSNR and SSIM between the SR image and the ground truth (HR thermal noisy image downsampled by four), and also to measure the PSNR and SSIM between the SR image and the semi-registered HR image (acquired with another camera). The results outperformed those from last year’s challenge, improving both evaluation metrics. This year, almost 100 teams participants registered for the challenge, showing the community’s interest in this hot topic. |
||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | cidis @ cidis @ | Serial | 175 | ||
Permanent link to this record | |||||
Author | Patricia L. Suarez; Angel D. Sappa; Boris X. Vintimilla | ||||
Title | Vegetation Index Estimation from Monospectral Images | Type | Conference Article | ||
Year | 2018 | Publication | 15th International Conference, Image Analysis and Recognition (ICIAR 2018), Póvoa de Varzim, Portugal. Lecture Notes in Computer Science | Abbreviated Journal | |
Volume | 10882 | Issue | Pages | 353-362 | |
Keywords | |||||
Abstract ![]() |
This paper proposes a novel approach to estimate Normalized Difference Vegetation Index (NDVI) from just the red channel of a RGB image. The NDVI index is defined as the ratio of the difference of the red and infrared radiances over their sum. In other words, information from the red channel of a RGB image and the corresponding infrared spectral band are required for its computation. In the current work the NDVI index is estimated just from the red channel by training a Conditional Generative Adversarial Network (CGAN). The architecture proposed for the generative network consists of a single level structure, which combines at the final layer results from convolutional operations together with the given red channel with Gaussian noise to enhance details, resulting in a sharp NDVI image. Then, the discriminative model estimates the probability that the NDVI generated index came from the training dataset, rather than the index automatically generated. Experimental results with a large set of real images are provided showing that a Conditional GAN single level model represents an acceptable approach to estimate NDVI index. |
||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | gtsi @ user @ | Serial | 82 | ||
Permanent link to this record | |||||
Author | Patricia L. Suarez; Angel D. Sappa; Boris X. Vintimilla; Riad I. Hammoud | ||||
Title | Image Vegetation Index through a Cycle Generative Adversarial Network | Type | Conference Article | ||
Year | 2019 | Publication | Conference on Computer Vision and Pattern Recognition Workshops (CVPR 2019); Long Beach, California, United States | Abbreviated Journal | |
Volume | Issue | Pages | 1014-1021 | ||
Keywords | |||||
Abstract ![]() |
This paper proposes a novel approach to estimate the Normalized Difference Vegetation Index (NDVI) just from an RGB image. The NDVI values are obtained by using images from the visible spectral band together with a synthetic near infrared image obtained by a cycled GAN. The cycled GAN network is able to obtain a NIR image from a given gray scale image. It is trained by using unpaired set of gray scale and NIR images by using a U-net architecture and a multiple loss function (gray scale images are obtained from the provided RGB images). Then, the NIR image estimated with the proposed cycle generative adversarial network is used to compute the NDVI index. Experimental results are provided showing the validity of the proposed approach. Additionally, comparisons with previous approaches are also provided. |
||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | gtsi @ user @ | Serial | 106 | ||
Permanent link to this record |