toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Dennis G. Romero; A. Frizera; Angel D. Sappa; Boris X. Vintimilla; T.F. Bastos pdf  url
openurl 
  Title (up) A predictive model for human activity recognition by observing actions and context Type Conference Article
  Year 2015 Publication ACIVS 2015 (Advanced Concepts for Intelligent Vision Systems), International Conference on, Catania, Italy, 2015 Abbreviated Journal  
  Volume Issue Pages 323 - 333  
  Keywords Edge width, Image blu,r Defocus map, Edge model  
  Abstract This paper presents a novel model to estimate human activities – a human activity is defined by a set of human actions. The proposed approach is based on the usage of Recurrent Neural Networks (RNN) and Bayesian inference through the continuous monitoring of human actions and its surrounding environment. In the current work human activities are inferred considering not only visual analysis but also additional resources; external sources of information, such as context information, are incorporated to contribute to the activity estimation. The novelty of the proposed approach lies in the way the information is encoded, so that it can be later associated according to a predefined semantic structure. Hence, a pattern representing a given activity can be defined by a set of actions, plus contextual information or other kind of information that could be relevant to describe the activity. Experimental results with real data are provided showing the validity of the proposed approach.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number cidis @ cidis @ Serial 43  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: