|
Records |
Links |
|
Author |
Patricia L. Suarez; Angel D. Sappa; Boris X. Vintimilla |

|
|
Title  |
Cross-spectral image dehaze through a dense stacked conditional GAN based approach. |
Type |
Conference Article |
|
Year |
2018 |
Publication |
14th IEEE International Conference on Signal Image Technology & Internet based Systems (SITIS 2018) |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
358-364 |
|
|
Keywords |
|
|
|
Abstract |
This paper proposes a novel approach to remove haze from RGB images using a near infrared images based on a dense stacked conditional Generative Adversarial Network (CGAN). The architecture of the deep network implemented receives, besides the images with haze, its corresponding image in the near infrared spectrum, which serve to accelerate the learning process of the details of the characteristics of the images. The model uses a triplet layer that allows the independence learning of each channel of the visible spectrum image to remove the haze on each color channel separately. A multiple loss function scheme is proposed, which ensures balanced learning between the colors and the structure of the images. Experimental results have shown that the proposed method effectively removes the haze from the images. Additionally, the proposed approach is compared with a state of the art approach showing better results. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
gtsi @ user @ |
Serial |
92 |
|
Permanent link to this record |
|
|
|
|
Author |
Patricia L. Suarez; Angel D. Sappa; Boris X. Vintimilla |

|
|
Title  |
Cross-spectral Image Patch Similarity using Convolutional Neural Network |
Type |
Conference Article |
|
Year |
2017 |
Publication |
2017 IEEE International Workshop of Electronics, Control, Measurement, Signals and their application to Mechatronics (ECMSM) |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
1-5 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
cidis @ cidis @ |
Serial |
57 |
|
Permanent link to this record |
|
|
|
|
Author |
Mildred Cruz; Cristhian A. Aguilera; Boris X. Vintimilla; Ricardo Toledo; Ángel D. Sappa |

|
|
Title  |
Cross-spectral image registration and fusion: an evaluation study |
Type |
Conference Article |
|
Year |
2015 |
Publication |
2nd International Conference on Machine Vision and Machine Learning |
Abbreviated Journal |
|
|
|
Volume |
331 |
Issue |
|
Pages |
|
|
|
Keywords |
multispectral imaging; image registration; data fusion; infrared and visible spectra |
|
|
Abstract |
This paper presents a preliminary study on the registration and fusion of cross-spectral imaging. The objective is to evaluate the validity of widely used computer vision approaches when they are applied at different spectral bands. In particular, we are interested in merging images from the infrared (both long wave infrared: LWIR and near infrared: NIR) and visible spectrum (VS). Experimental results with different data sets are presented. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Computer Vision Center |
Place of Publication |
Barcelona, Spain |
Editor |
|
|
|
Language |
English |
Summary Language |
English |
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
cidis @ cidis @ |
Serial |
35 |
|
Permanent link to this record |
|
|
|
|
Author |
Rafael Rivadeneira, Henry Velesaca & Angel Sappa |


|
|
Title  |
Cross-Spectral Image Registration: a Comparative Study and a New Benchmark Dataset |
Type |
Conference Article |
|
Year |
2024 |
Publication |
Lecture Notes in Networks and Systems: 4th International Conference on Innovations in Computational Intelligence and Computer Vision (ICICV 2024) |
Abbreviated Journal |
|
|
|
Volume |
Vol. 1117 LNNS |
Issue |
|
Pages |
1-12 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
23673370 |
ISBN |
978-981976991-9 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
cidis @ cidis @ |
Serial |
237 |
|
Permanent link to this record |
|
|
|
|
Author |
Cristhian A. Aguilera; Angel D. Sappa; Ricardo Toledo |

|
|
Title  |
Cross-Spectral Local Descriptors via Quadruplet Network |
Type |
Journal Article |
|
Year |
2017 |
Publication |
In Sensors Journal |
Abbreviated Journal |
|
|
|
Volume |
Vol. 17 |
Issue |
|
Pages |
pp. 873 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
gtsi @ user @ |
Serial |
64 |
|
Permanent link to this record |
|
|
|
|
Author |
N. Onkarappa; Cristhian A. Aguilera; B. X. Vintimilla; Angel D. Sappa |

|
|
Title  |
Cross-spectral Stereo Correspondence using Dense Flow Fields |
Type |
Conference Article |
|
Year |
2014 |
Publication |
Computer Vision Theory and Applications (VISAPP), 2014 International Conference on, Lisbon, Portugal, 2014 |
Abbreviated Journal |
|
|
|
Volume |
3 |
Issue |
|
Pages |
613 - 617 |
|
|
Keywords |
Cross-spectral Stereo Correspondence, Dense Optical Flow, Infrared and Visible Spectrum |
|
|
Abstract |
This manuscript addresses the cross-spectral stereo correspondence problem. It proposes the usage of a dense flow field based representation instead of the original cross-spectral images, which have a low correlation. In this way, working in the flow field space, classical cost functions can be used as similarity measures. Preliminary experimental results on urban environments have been obtained showing the validity of the proposed approach. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
IEEE |
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
English |
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
2014 International Conference on Computer Vision Theory and Applications (VISAPP) |
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
cidis @ cidis @ |
Serial |
27 |
|
Permanent link to this record |
|
|
|
|
Author |
Patricia L. Suárez, Angel D. Sappa, Boris X. Vintimilla |

|
|
Title  |
Cycle generative adversarial network: towards a low-cost vegetation index estimation |
Type |
Conference Article |
|
Year |
2021 |
Publication |
IEEE International Conference on Image Processing (ICIP 2021) |
Abbreviated Journal |
|
|
|
Volume |
2021-September |
Issue |
|
Pages |
2783-2787 |
|
|
Keywords |
CyclicGAN, NDVI, near infrared spectra, instance normalization. |
|
|
Abstract |
This paper presents a novel unsupervised approach to estimate the Normalized Difference Vegetation Index (NDVI).The NDVI is obtained as the ratio between information from the visible and near infrared spectral bands; in the current work, the NDVI is estimated just from an image of the visible spectrum through a Cyclic Generative Adversarial Network (CyclicGAN). This unsupervised architecture learns to estimate the NDVI index by means of an image translation between the red channel of a given RGB image and the NDVI unpaired index’s image. The translation is obtained by means of a ResNET architecture and a multiple loss function. Experimental results obtained with this unsupervised scheme show the validity of the implemented model. Additionally, comparisons with the state of the art approaches are provided showing improvements with the proposed approach. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
cidis @ cidis @ |
Serial |
164 |
|
Permanent link to this record |
|
|
|
|
Author |
Cristina L. Abad; Yi Lu; Roy H. Campbell |

|
|
Title  |
DARE: Adaptive Data Replication for Efficient Cluster Scheduling |
Type |
Conference Article |
|
Year |
2011 |
Publication |
IEEE International Conference on Cluster Computing, 2011 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
159 - 168 |
|
|
Keywords |
MapReduce, replication, scheduling, locality |
|
|
Abstract |
Placing data as close as possible to computation is a common practice of data intensive systems, commonly referred to as the data locality problem. By analyzing existing production systems, we confirm the benefit of data locality and find that data have different popularity and varying correlation of accesses. We propose DARE, a distributed adaptive data replication algorithm that aids the scheduler to achieve better data locality. DARE solves two problems, how many replicas to allocate for each file and where to place them, using probabilistic sampling and a competitive aging algorithm independently at each node. It takes advantage of existing remote data accesses in the system and incurs no extra network usage. Using two mixed workload traces from Facebook, we show that DARE improves data locality by more than 7 times with the FIFO scheduler in Hadoop and achieves more than 85% data locality for the FAIR scheduler with delay scheduling. Turnaround time and job slowdown are reduced by 19% and 25%, respectively. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
English |
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
yes |
|
|
Call Number |
cidis @ cidis @ |
Serial |
21 |
|
Permanent link to this record |
|
|
|
|
Author |
Jorge L. Charco; Boris X. Vintimilla; Angel D. Sappa |

|
|
Title  |
Deep learning based camera pose estimation in multi-view environment. |
Type |
Conference Article |
|
Year |
2018 |
Publication |
14th IEEE International Conference on Signal Image Technology & Internet based Systems (SITIS 2018) |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
224-228 |
|
|
Keywords |
|
|
|
Abstract |
This paper proposes to use a deep learning network architecture for relative camera pose estimation on a multi-view environment. The proposed network is a variant architecture of AlexNet to use as regressor for prediction the relative translation and rotation as output. The proposed approach is trained from scratch on a large data set that takes as input a pair of images from the same scene. This new architecture is compared with a previous approach using standard metrics, obtaining better results on the relative camera pose. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
gtsi @ user @ |
Serial |
93 |
|
Permanent link to this record |
|
|
|
|
Author |
Henry O. Velesaca; Raul A. Mira; Patricia L. Suarez; Christian X. Larrea; Angel D. Sappa. |

|
|
Title  |
Deep Learning based Corn Kernel Classification. |
Type |
Conference Article |
|
Year |
2020 |
Publication |
The 1st International Workshop and Prize Challenge on Agriculture-Vision: Challenges & Opportunities for Computer Vision in Agriculture on the Conference Computer on Vision and Pattern Recongnition (CVPR 2020) |
Abbreviated Journal |
|
|
|
Volume |
2020-June |
Issue |
9150684 |
Pages |
294-302 |
|
|
Keywords |
|
|
|
Abstract |
This paper presents a full pipeline to classify sample sets of corn kernels. The proposed approach follows a segmentation-classification scheme. The image segmentation is performed through a well known deep learning based
approach, the Mask R-CNN architecture, while the classification is performed by means of a novel-lightweight network specially designed for this task—good corn kernel, defective corn kernel and impurity categories are considered.
As a second contribution, a carefully annotated multitouching corn kernel dataset has been generated. This dataset has been used for training the segmentation and
the classification modules. Quantitative evaluations have been performed and comparisons with other approaches provided showing improvements with the proposed pipeline. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
21607508 |
ISBN |
978-172819360-1 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
cidis @ cidis @ |
Serial |
124 |
|
Permanent link to this record |