toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author (up) Mehri, A, Ardakani, P.B., Sappa, A.D. pdf  openurl
  Title MPRNet: Multi-Path Residual Network for Lightweight Image Super Resolution. Type Conference Article
  Year 2021 Publication In IEEE Winter Conference on Applications of Computer Vision WACV 2021, enero 5-9, 2021 Abbreviated Journal  
  Volume Issue Pages 2703-2712  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number cidis @ cidis @ Serial 148  
Permanent link to this record
 

 
Author (up) Mehri, A, Ardakani, P.B., Sappa, A.D. pdf  openurl
  Title LiNet: A Lightweight Network for Image Super Resolution Type Conference Article
  Year 2021 Publication 25th International Conference on Pattern Recognition (ICPR), enero 10-15, 2021 Abbreviated Journal  
  Volume Issue Pages 7196-7202  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number cidis @ cidis @ Serial 149  
Permanent link to this record
 

 
Author (up) Michael Teutsch, Angel Sappa & Riad Hammoud url  openurl
  Title Computer Vision in the Infrared Spectrum: Challenges and ApproachesComputer Vision in the Infrared Spectrum: Challenges and Approaches Type Journal Article
  Year 2021 Publication Synthesis Lectures on Computer Vision Abbreviated Journal  
  Volume Vol. 10 No. 2 Issue Pages pp. 138  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number cidis @ cidis @ Serial 166  
Permanent link to this record
 

 
Author (up) Miguel A. Murillo, Julio E. Alvia, & Miguel Realpe url  openurl
  Title Beyond visual and radio line of sight UAVs monitoring system through open software in a simulated environment. Type Conference Article
  Year 2021 Publication The 2nd International Conference on Applied Technologies (ICAT 2020), diciembre 2-4. Communications in Computer and Information Science Abbreviated Journal  
  Volume 1388 Issue Pages 629-642  
  Keywords Drone, Open Source, Internet, Web Application, Web Server, SITL, Line of sight, UAV.  
  Abstract The problem of loss of line of sight when operating drones has be-come a reality with adverse effects for professional and amateur drone opera-tors, since it brings technical problems such as loss of data collected by the de-vice in one or more instants of time during the flight and even misunderstand-ings of legal nature when the drone flies over prohibited or private places. This paper describes the implementation of a drone monitoring system using the In-ternet as a long-range communication network in order to avoid the problem of loss of communication between the ground station and the device. For this, a simulated environment is used through an appropriate open software tool. The operation of the system is based on a client that makes requests to a server, the latter in turn communicates with several servers, each of which has a drone connected to it. In the proposed system when a drone is ready to start a flight, its server informs the main server of the system, which in turn gives feedback to the client informing it that the device is ready to carry out the flight; this way customers can send a mission to the device and keep track of its progress in real time on the screen of their web application.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number cidis @ cidis @ Serial 186  
Permanent link to this record
 

 
Author (up) Miguel Oliveira; Vítor Santos; Angel D. Sappa; Paulo Dias pdf  openurl
  Title Scene representations for autonomous driving: an approach based on polygonal primitives Type Conference Article
  Year 2015 Publication Iberian Robotics Conference (ROBOT 2015), Lisbon, Portugal, 2015 Abbreviated Journal  
  Volume 417 Issue Pages 503-515  
  Keywords Scene reconstruction, Point cloud, Autonomous vehicles  
  Abstract In this paper, we present a novel methodology to compute a 3D scene representation. The algorithm uses macro scale polygonal primitives to model the scene. This means that the representation of the scene is given as a list of large scale polygons that describe the geometric structure of the environment. Results show that the approach is capable of producing accurate descriptions of the scene. In addition, the algorithm is very efficient when compared to other techniques.  
  Address  
  Corporate Author Thesis  
  Publisher Springer International Publishing Switzerland 2016 Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Second Iberian Robotics Conference  
  Notes Approved no  
  Call Number cidis @ cidis @ Serial 45  
Permanent link to this record
 

 
Author (up) Miguel Oliveira; Vítor Santos; Angel D. Sappa; Paulo Dias; A. Paulo Moreira pdf  url
openurl 
  Title Incremental Scenario Representations for Autonomous Driving using Geometric Polygonal Primitives Type Journal Article
  Year 2016 Publication Robotics and Autonomous Systems Journal Abbreviated Journal  
  Volume Vol. 83 Issue Pages pp. 312-325  
  Keywords Incremental scene reconstructionPoint cloudsAutonomous vehiclesPolygonal primitives  
  Abstract When an autonomous vehicle is traveling through some scenario it receives a continuous stream of sensor data. This sensor data arrives in an asynchronous fashion and often contains overlapping or redundant information. Thus, it is not trivial how a representation of the environment observed by the vehicle can be created and updated over time. This paper presents a novel methodology to compute an incremental 3D representation of a scenario from 3D range measurements. We propose to use macro scale polygonal primitives to model the scenario. This means that the representation of the scene is given as a list of large scale polygons that describe the geometric structure of the environment. Furthermore, we propose mechanisms designed to update the geometric polygonal primitives over time whenever fresh sensor data is collected. Results show that the approach is capable of producing accurate descriptions of the scene, and that it is computationally very efficient when compared to other reconstruction techniques.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number cidis @ cidis @ Serial 49  
Permanent link to this record
 

 
Author (up) Miguel Oliveira; Vítor Santos; Angel D. Sappa; Paulo Dias; A. Paulo Moreira pdf  url
openurl 
  Title Incremental Texture Mapping for Autonomous Driving Type Journal Article
  Year 2016 Publication Robotics and Autonomous Systems Journal Abbreviated Journal  
  Volume Vol. 84 Issue Pages pp. 113-128  
  Keywords Scene reconstruction, Autonomous driving, Texture mapping  
  Abstract Autonomous vehicles have a large number of on-board sensors, not only for providing coverage all around the vehicle, but also to ensure multi-modality in the observation of the scene. Because of this, it is not trivial to come up with a single, unique representation that feeds from the data given by all these sensors. We propose an algorithm which is capable of mapping texture collected from vision based sensors onto a geometric description of the scenario constructed from data provided by 3D sensors. The algorithm uses a constrained Delaunay triangulation to produce a mesh which is updated using a specially devised sequence of operations. These enforce a partial configuration of the mesh that avoids bad quality textures and ensures that there are no gaps in the texture. Results show that this algorithm is capable of producing fine quality textures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number cidis @ cidis @ Serial 50  
Permanent link to this record
 

 
Author (up) Miguel Realpe; Boris X. Vintimilla; L. Vlacic pdf  openurl
  Title Towards Fault Tolerant Perception for autonomous vehicles: Local Fusion. Type Conference Article
  Year 2015 Publication IEEE 7th International Conference on Cybernetics and Intelligent Systems (CIS) and IEEE Conference on Robotics, Automation and Mechatronics (RAM), Siem Reap, 2015. Abbreviated Journal  
  Volume Issue Pages 253-258  
  Keywords  
  Abstract Many robust sensor fusion strategies have been developed in order to reliably detect the surrounding environments of an autonomous vehicle. However, in real situations there is always the possibility that sensors or other components may fail. Thus, internal modules and sensors need to be monitored to ensure their proper function. This paper introduces a general view of a perception architecture designed to detect and classify obstacles in an autonomous vehicle's environment using a fault tolerant framework, whereas elaborates the object detection and local fusion modules proposed in order to achieve the modularity and real-time process required by the system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number cidis @ cidis @ Serial 37  
Permanent link to this record
 

 
Author (up) Miguel Realpe; Boris X. Vintimilla; Ljubo Vlacic pdf  url
openurl 
  Title Sensor Fault Detection and Diagnosis for autonomous vehicles Type Conference Article
  Year 2015 Publication 2nd International Conference on Mechatronics, Automation and Manufacturing (ICMAM 2015), International Conference on, Singapur, 2015 Abbreviated Journal  
  Volume 30 Issue MATEC Web of Conferences Pages 1-6  
  Keywords  
  Abstract In recent years testing autonomous vehicles on public roads has become a reality. However, before having autonomous vehicles completely accepted on the roads, they have to demonstrate safe operation and reliable interaction with other traffic participants. Furthermore, in real situations and long term operation, there is always the possibility that diverse components may fail. This paper deals with possible sensor faults by defining a federated sensor data fusion architecture. The proposed architecture is designed to detect obstacles in an autonomous vehicle’s environment while detecting a faulty sensor using SVM models for fault detection and diagnosis. Experimental results using sensor information from the KITTI dataset confirm the feasibility of the proposed architecture to detect soft and hard faults from a particular sensor.  
  Address  
  Corporate Author Thesis  
  Publisher EDP Sciences Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number cidis @ cidis @ Serial 42  
Permanent link to this record
 

 
Author (up) Miguel Realpe; Boris X. Vintimilla; Ljubo Vlacic pdf  openurl
  Title Multi-sensor Fusion Module in a Fault Tolerant Perception System for Autonomous Vehicles Type Journal Article
  Year 2016 Publication Journal of Automation and Control Engineering (JOACE) Abbreviated Journal  
  Volume Vol. 4 Issue Pages pp. 430-436  
  Keywords Fault Tolerance, Data Fusion, Multi-sensor Fusion, Autonomous Vehicles, Perception System  
  Abstract Driverless vehicles are currently being tested on public roads in order to examine their ability to perform in a safe and reliable way in real world situations. However, the long-term reliable operation of a vehicle’s diverse sensors and the effects of potential sensor faults in the vehicle system have not been tested yet. This paper is proposing a sensor fusion architecture that minimizes the influence of a sensor fault. Experimental results are presented simulating faults by introducing displacements in the sensor information from the KITTI dataset.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number cidis @ cidis @ Serial 51  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: