toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Stalin Francis Quinde pdf  openurl
  Title Un nuevo modelo BM3D-RNCA para mejorar la estimación de la imagen libre de ruido producida por el método BM3D. (Ph.D. Angel Sappa, Director.). M.Sc. thesis Type Book Chapter
  Year 2019 Publication Ediciones FIEC-ESPOL Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address (up)  
  Corporate Author Ph.D. Angel Sappa, Director. Thesis Master's thesis  
  Publisher Place of Publication Editor  
  Language Español Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number gtsi @ user @ Serial 117  
Permanent link to this record
 

 
Author Shendry Rosero Vásquez pdf  openurl
  Title Reconocimiento facial: técnicas tradicionales y técnicas de aprendizaje profundo, un análisis. (Ph.D. Angel Sappa, Director & Ph.D. Boris Vintimilla, Codirector.). M.Sc. thesis Type Book Chapter
  Year 2019 Publication Ediciones FIEC-ESPOL Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address (up)  
  Corporate Author Ph.D. Angel Sappa, Director de tesis & Ph.D. Boris Vintimilla, Codirector Thesis Master's thesis  
  Publisher Place of Publication Editor  
  Language Español Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number gtsi @ user @ Serial 114  
Permanent link to this record
 

 
Author Patricia L. Suarez; Angel D. Sappa; Boris X. Vintimilla pdf  openurl
  Title Image patch similarity through a meta-learning metric based approach Type Conference Article
  Year 2019 Publication 15th International Conference on Signal Image Technology & Internet based Systems (SITIS 2019); Sorrento, Italia Abbreviated Journal  
  Volume Issue Pages 511-517  
  Keywords  
  Abstract Comparing images regions are one of the core methods used on computer vision for tasks like image classification, scene understanding, object detection and recognition. Hence, this paper proposes a novel approach to determine similarity of image regions (patches), in order to obtain the best representation of image patches. This problem has been studied by many researchers presenting different approaches, however, the ability to find the better criteria to measure the similarity on image regions are still a challenge. The present work tackles this problem using a few-shot metric based meta-learning framework able to compare image regions and determining a similarity measure to decide if there is similarity between the compared patches. Our model is training end-to-end from scratch. Experimental results

have shown that the proposed approach effectively estimates the similarity of the patches and, comparing it with the state of the art approaches, shows better results.
 
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number gtsi @ user @ Serial 115  
Permanent link to this record
 

 
Author Miguel Realpe; Jonathan S. Paillacho Corredores; Joe Saverio & Allan Alarcon pdf  openurl
  Title Open Source system for identification of corn leaf chlorophyll contents based on multispectral images Type Conference Article
  Year 2019 Publication International Conference on Applied Technologies (ICAT 2019); Quito, Ecuador Abbreviated Journal  
  Volume Issue Pages 572-581  
  Keywords  
  Abstract It is important for farmers to know the level of chlorophyll in plants since this depends on the treatment they should give to their crops. There are two common classic methods to get chlorophyll values: from laboratory analysis and electronic devices. Both methods obtain the chlorophyll level of one sample at a time, although they can be destructive. The objective of this research is to develop a system that allows obtaining the chlorophyll level of plants using images.

Python programming language and different libraries of that language were used to develop the solution. It was decided to implement an image labeling module, a simple linear regression and a prediction module. The first module was used to create a database that links the values of the images with those of chlorophyll, which was then used to obtain linear regression in order to determine the relationship between these variables. Finally, the linear

regression was used in the prediction system to obtain chlorophyll values from the images. The linear regression was trained with 92 images, obtaining a root-mean-square error of 7.27 SPAD units. While the testing was perform using 10 values getting a maximum error of 15.5%.

It is concluded that the system is appropriate for chlorophyll contents identification of corn leaves in field tests.

However, it can also be adapted for other measurement and crops. The system can be downloaded at github.com/JoeSvr95/NDVI-Checking [1].
 
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number gtsi @ user @ Serial 116  
Permanent link to this record
 

 
Author W. Agila; Gomer Rubio; L. Miranda; D. Sanaguano pdf  openurl
  Title Open Control Architecture for the Characterization and Control of the PEM Fuel Cell Type Conference Article
  Year 2019 Publication IEEE ETCM 2019 Fourth Ecuador Technical Chapters Meeting; Guayaquil, Ecuador Abbreviated Journal  
  Volume Issue Pages 1-5  
  Keywords PEM fuel cell, Experimental System, Control Engineering.  
  Abstract Proton exchange membrane (PEM) fuel cells, are an efficient and clean source of electrical energy. The analysis of its operation requires experimental work, which allows measuring, modeling and optimizing PEM fuel cells electrical behavior under different operating conditions. Therefore, having an experimentation platform that allows to easily carry out its study and control is essential. This research presents the design and development of an open instrumental system that allows measuring, controlling and determining the operating parameters of a PEM fuel cell. As results, the polarization curves, voltage-current, obtained by the system itself in different experimental conditions are shown. These curves are a very useful tool to evaluate the electrical behavior of the PEM battery.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number gtsi @ user @ Serial 118  
Permanent link to this record
 

 
Author Santos V.; Angel D. Sappa.; Oliveira M. & de la Escalera A. pdf  openurl
  Title Special Issue on Autonomous Driving and Driver Assistance Systems Type Journal Article
  Year 2019 Publication In Robotics and Autonomous Systems Abbreviated Journal  
  Volume 121 Issue Pages  
  Keywords  
  Abstract  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number gtsi @ user @ Serial 119  
Permanent link to this record
 

 
Author Jorge L. Charco; Angel D. Sappa; Boris X. Vintimilla; Henry O. Velesaca pdf  isbn
openurl 
  Title Transfer Learning from Synthetic Data in the Camera Pose Estimation Problem Type Conference Article
  Year 2020 Publication The 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2020); Valletta, Malta; 27-29 Febrero 2020 Abbreviated Journal  
  Volume 4 Issue Pages 498-505  
  Keywords Relative Camera Pose Estimation, Siamese Architecture, Synthetic Data, Deep Learning, Multi-View Environments, Extrinsic Camera Parameters.  
  Abstract This paper presents a novel Siamese network architecture, as a variant of Resnet-50, to estimate the relative camera pose on multi-view environments. In order to improve the performance of the proposed model

a transfer learning strategy, based on synthetic images obtained from a virtual-world, is considered. The

transfer learning consist of first training the network using pairs of images from the virtual-world scenario

considering different conditions (i.e., weather, illumination, objects, buildings, etc.); then, the learned weight

of the network are transferred to the real case, where images from real-world scenarios are considered. Experimental results and comparisons with the state of the art show both, improvements on the relative pose

estimation accuracy using the proposed model, as well as further improvements when the transfer learning

strategy (synthetic-world data – transfer learning – real-world data) is considered to tackle the limitation on

the training due to the reduced number of pairs of real-images on most of the public data sets.
 
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-989758402-2 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number gtsi @ user @ Serial 120  
Permanent link to this record
 

 
Author Rafael E. Rivadeneira; Angel D. Sappa; Boris X. Vintimilla pdf  isbn
openurl 
  Title Thermal Image Super-Resolution: a Novel Architecture and Dataset Type Conference Article
  Year 2020 Publication The 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2020); Valletta, Malta; 27-29 Febrero 2020 Abbreviated Journal  
  Volume 4 Issue Pages 111-119  
  Keywords Thermal images, Far Infrared, Dataset, Super-Resolution.  
  Abstract This paper proposes a novel CycleGAN architecture for thermal image super-resolution, together with a large

dataset consisting of thermal images at different resolutions. The dataset has been acquired using three thermal

cameras at different resolutions, which acquire images from the same scenario at the same time. The thermal

cameras are mounted in rig trying to minimize the baseline distance to make easier the registration problem.

The proposed architecture is based on ResNet6 as a Generator and PatchGAN as Discriminator. The novelty

on the proposed unsupervised super-resolution training (CycleGAN) is possible due to the existence of aforementioned thermal images—images of the same scenario with different resolutions. The proposed approach

is evaluated in the dataset and compared with classical bicubic interpolation. The dataset and the network are

available.
 
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-989758402-2 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number gtsi @ user @ Serial 121  
Permanent link to this record
 

 
Author Suárez P. pdf  openurl
  Title Processing and Representation of Multispectral Images Using Deep Learning Techniques Type Magazine Article
  Year 2021 Publication In Electronic Letters on Computer Vision and Image Analysis Abbreviated Journal  
  Volume Vol. 19 Issue Issue 2 Pages pp. 5-8  
  Keywords  
  Abstract  
  Address (up)  
  Corporate Author Ph.D. Angel Sappa, Director & Ph.D. Boris Vintimilla, Codirector Thesis Master's thesis  
  Publisher Place of Publication Editor  
  Language Español Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number cidis @ cidis @ Serial 122  
Permanent link to this record
 

 
Author Rafael E. Rivadeneira; Angel D. Sappa; Boris X. Vintimilla; Lin Guo; Jiankun Hou; Armin Mehri; Parichehr Behjati; Ardakani Heena Patel; Vishal Chudasama; Kalpesh Prajapati; Kishor P. Upla; Raghavendra Ramachandra; Kiran Raja; Christoph Busch; Feras Almasri; Olivier Debeir; Sabari Nathan; Priya Kansal; Nolan Gutierrez; Bardia Mojra; William J. Beksi pdf  isbn
openurl 
  Title Thermal Image Super-Resolution Challenge – PBVS 2020 Type Conference Article
  Year 2020 Publication The 16th IEEE Workshop on Perception Beyond the Visible Spectrum on the Conference on Computer Vision and Pattern Recongnition (CVPR 2020) Abbreviated Journal  
  Volume 2020-June Issue 9151059 Pages 432-439  
  Keywords  
  Abstract This paper summarizes the top contributions to the first challenge on thermal image super-resolution (TISR) which was organized as part of the Perception Beyond the Visible Spectrum (PBVS) 2020 workshop. In this challenge, a novel thermal image dataset is considered together with stateof-the-art approaches evaluated under a common framework.

The dataset used in the challenge consists of 1021 thermal images, obtained from three distinct thermal cameras at different resolutions (low-resolution, mid-resolution, and high-resolution), resulting in a total of 3063 thermal images. From each resolution, 951 images are used for training and 50 for testing while the 20 remaining images are used for two proposed evaluations. The first evaluation consists of downsampling the low-resolution, midresolution, and high-resolution thermal images by x2, x3 and x4 respectively, and comparing their super-resolution

results with the corresponding ground truth images. The second evaluation is comprised of obtaining the x2 superresolution from a given mid-resolution thermal image and comparing it with the corresponding semi-registered highresolution thermal image. Out of 51 registered participants, 6 teams reached the final validation phase.
 
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 21607508 ISBN 978-172819360-1 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number cidis @ cidis @ Serial 123  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: