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a b s t r a c t 

Edge detection is the basis of many computer vision applications. State of the art predominantly relies 

on deep learning with two decisive factors: dataset content and network architecture. Most of the pub- 

licly available datasets are not curated for edge detection tasks. Here, we address this limitation. First, we 

argue that edges, contours and boundaries, despite their overlaps, are three distinct visual features requir- 

ing separate benchmark datasets. To this end, we present a new dataset of edges. Second, we propose a 

novel architecture, termed Dense Extreme Inception Network for Edge Detection (DexiNed), that can be 

trained from scratch without any pre-trained weights. DexiNed outperforms other algorithms in the pre- 

sented dataset. It also generalizes well to other datasets without any fine-tuning. The higher quality of 

DexiNed is also perceptually evident thanks to the sharper and finer edges it outputs. 

© 2023 Elsevier Ltd. All rights reserved. 
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. Introduction 

Edges provide important clues in visual information process- 

ng, from classical computer vision algorithms in image recogni- 

ion [2] to modern techniques in generative adversarial networks 

GAN) [3] . Despite their importance, robust edge detection remains 

n open problem. To demonstrate this, let’s examine four exam- 

le images in Fig. 1 . The third to fifth rows illustrate the results

f three state-of-the-art models (RCF [4] , BDCN [5] , and CATS [6] )

hat are trained on the BSDS dataset [1] . It is qualitatively visible 

hat neither of these models faithfully detects the edges of tiny 

etails. For instance, while the internal edges of the bell sculpture 

r the helicopter are fully annotated in the ground truth, the edge 

utput of those models does not capture these details. We can ob- 

erve a similar phenomenon in the stripes of the building and the 

ebra. In this case, although these details are also excluded in the 

round truth, the edges are clearly visible in the image. Grounded 

n this, we argue that current models of edge detection require 
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urther improvement to robustly detect edges and generalize well 

o new scenes independent of their training set. 

Following this, we argue that one of the main limitations of cur- 

ent deep learning (DL) approaches is the annotated ground truth 

n the training set. BSDS is widely accepted within the commu- 

ity as the benchmark dataset to train and evaluate edge-detection 

lgorithms. However, this dataset was originally designed and an- 

otated for scene segmentation. Therefore the annotated ground 

ruth corresponds mainly to high-level object boundaries rather 

han low-level edges. Given the DL-based models are strongly 

haped by their training data, we need to acquire independent 

atasets for three tasks: edge-, contour, and boundary-detection 

7,8] . This is of great importance for both training and evaluation. 

t is challenging for a network to learn these three concepts from 

 dataset that blends edges, contours and boundaries. It is also dif- 

cult to judge the fitness of a network, whether it is performing 

etter or worse in one of those tasks. 

To showcase this importance at a glance, we can look at the 

ottom two rows of Fig. 1 . The only difference between those 

wo rows is the training set. When our network—Dense Extreme 

nception Network for Edge Detection (DexiNed)—is trained on 

SDS, it suffers from the same set of problems as other models. 

owever, when we train DexiNed on our dataset (BIPEDv2), it 

eneralizes well to BSDS images in fine-scale edges. The image 

ontent of these two datasets qualitatively differs. The BIPEDv2 

ainly contains images of urban settings. The accurately detected 

dges in the zebra and bell sculpture images suggest that the 

exiNed-BIPEDv2 is robust to novel scenes. This robustness is 
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Fig. 1. The results of several algorithms on the BSDS dataset [1] . The suffix in model names (i.e., BSDS and BIPEDv2) indicates the training set of that model. 
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5 Dataset and code: https://github.com/xavysp/DexiNed . 
hanks to the careful manual annotation of edges in the proposed 

ataset. We ensured that all the edges, within or across objects, 

re reflected in the ground truth data. 

.1. Edges, contours and boundaries 

The following three terms, edge, contour, and boundary detec- 

ion are often used interchangeably despite their differences. This 

s a potential cause of confusion in the interpretation and evalua- 

ion of models. Thus, we start by reviewing the origin of each term. 

n the 1980s, edge detection was defined as the intensity changes 

n a vicinity originated by discontinuities along the surface, re- 

ectance, or illumination [9] . This was revisited by emphasizing 

he properties of objects, such as their photometrical, geometrical 

nd physical characteristics [10] . Accordingly, contours and bound- 

ries are a subset of edges and are associated with semantically 

eaningful entities [11] , for example, the silhouette and outline of 

n object [12] . Boundary refers to the object borders in the im- 

ge plane, corresponding to pixel ownership within a scene [13,14] . 

n the contrary, contour refers to the borders of a region within a 

iven object [7] . 

To summarize, given an image, an edge detection algorithm 

ims to capture all the meaningful intensity discontinuities. It does 

ot concern itself with pixel ownership or open and closed shapes. 

hese are the domain of contour and boundary detection to elim- 

nate edges that do not correspond to salient features of objects 

nd shapes. Hence, as edge, contour and boundary detection are 

rimary operations, each process will improve different computer 

ision or image processing tasks. For instance, edge-maps are more 

uitable for applications with a requirement for a finer level of 

etail (e.g., image enhancement [15] , super-resolution [16] , image 

eneration and reconstruction [17] , etc.). In other tasks like scene 

semantic segmentation and saliency detection, boundary maps 

ould be more beneficial. In this article, we focus on edges. 

.2. Structure of data matters 

Currently, deep learning is the primary approach in the task of 

dge detection. It is well established that the quality of the train- 

ng dataset is a critical factor within this framework [18] . To this 

nd, state-of-the-art heavily relies on the Berkeley segmentation 

ataset (i.e., BSDS300 [14] and BSDS500 [1] ) even though image 

egmentation was the original objective of this dataset and its re- 

ned version turned into a benchmark dataset of boundary de- 

ection. Most studies train their models on BSDS300 and validate 

hem on BSDS500. 

Each image contains boundary annotations drawn by at least 

ve different participants. In many cases, there is a large discrep- 

ncy among different human-drawn boundaries (see Fig. 2 ). This 

ssue is partially overcome by computing the loss function over a 

onsensus ground truth, e.g., [4,5,19] . In the consensus stage, pixels 

hat are annotated by more than two participants are considered 

rue edges, otherwise discarded. This facilitates the convergence of 

he training process [19] . Nevertheless, this consensus stage also 

lters out a large portion of true edges. This is visually evident in 

ig. 2 . For instance, all the zebra stripes vanish even with a mod- 

rate consensus of two participants. A similar observation can be 

ade in the case of the red car. This problem exists in many im- 

ges of the BSDS. 

Hence, the networks trained on the BSDS learn to become a 

oundary-detector rather than an edge-detector . The distinction be- 

ween the two can be of great importance, for example, when 

dges are the building blocks of another computer vision applica- 

ion, as in [20] . This issue is addressed in this study. We present a

enchmark dataset of edges that allows for an accurate evaluation 

f edge detection algorithms. 
3 
.3. Contributions 

In this paper, we address the aforementioned issues by propos- 

ng an end-to-end deep learning approach for the task of edge de- 

ection. Our primary objective is to identify all true edges in any 

iven image. To demonstrate this, we train a network only on one 

ataset and evaluate it on several publicly available datasets. We 

how that our model obtains a higher degree of generalization in 

omparison to the other algorithms of state-of-the-art. We conduct 

n exhaustive quantitative evaluation on two datasets with anno- 

ated edges (i.e., MDBD [7] and BIPED). On other datasets with con- 

our/boundary annotation, we qualitatively show the robustness of 

ur model. In the current work, we extend our previous conference 

aper [21] in the following aspects: 

• Presenting a detailed description of the proposed architecture, 

DexiNed (Dense eXtreme Inception Network for Edge Detec- 

tion), and thoroughly analysing the impact of its different com- 

ponents. 
• Boosting the degree of annotation, specifically for fine-scale 

edges, in the proposed benchmark dataset of edge detection, 

referred to as BIPED (Barcelona Images for Perceptual Edge De- 

tection). 5 

• Establishing a common evaluation benchmark among four 

state-of-the-art networks by interchanging the training and val- 

idation set between two datasets of edge detection (BIPED and 

MDBD). 
• Improving the loss functions from BDCN [5] by modifying the 

λ values to better balance the portion of positive and negative 

samples in each DexiNed output and incorporating averaging at 

the level of pixels. 

The rest of the paper is organized as follows. Section 2 summa- 

izes the most relevant works on edge detection. Then, the pro- 

osed approach is described in Section 3 . The acquired dataset 

nd ground truth generated for training and testing, as well as the 

atasets used for validating the proposed DexiNed architecture, are 

resented in Section 4 . In Section 5 , quantitative and qualitative 

etails are summarized. Finally, conclusions are given in Section 7 . 

. Related work 

There is a large body of literature on edge detection (for re- 

iew see [10] and [11] ). In this section, a set of representative al- 

orithms are detailed. They can be broadly categorized into four 

roups: i ) driven by low-level features; ii ) brain-inspired; iii ) clas- 

ical learning-based; and i v ) deep learning. 

Algorithms driven by low-level features : The early edge detec- 

ion algorithms such as Sobel [22] , Robert and Prewitt [23] are 

ased on the first-order derivative. The input image is smoothed 

y the linear local filters, normally, a set of two orientations (hor- 

zontal and vertical). In the end, edges are detected by thresh- 

lding. These operators advanced by considering the second-order 

erivative, where edges are detected by the extraction of zero- 

rossing points. In the mid-eighties Canny [9] proposed an edge 

etector by grouping three different key processes. Despite being 

ntiquated, these approaches are still used in some modern com- 

uter vision applications. Many variants of the above-mentioned 

lgorithms have been present in the literature. 

Brain-inspired algorithms: This set of edge detection algorithms 

elies in known mechanisms of the biological visual system. Since 

he 1960s, experiments on monkeys and cats have significantly ad- 

anced our understanding of the Primary Visual Cortex (V1). For 

nstance, it was discovered that a group of simple cells are respon- 

ive to edges [24] . The authors in [24] develop a mathematical 

https://github.com/xavysp/DexiNed
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Fig. 2. A careful examination of the BSDS benchmark datasets for two sample images and their corresponding ground truths. There is a large discrepancy among human- 

drawn “edges”. Enforcing consensus among two/three annotations results in the elimination of true edges. This issue demonstrates that BSDS is a suitable dataset for 

evaluating boundaries but not edges. 
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odel to simulate the human retinal vision by Gaussian deriva- 

ives; since then, many algorithms have been implemented resem- 

ling the edge detection of the biological neurons in real-world 

mages. For example, in [25] a special line weight function is in- 

roduced for edge enhancement, which consists of a combination 

f zero and second-order Hermite functions. Later on, in [13] Ga- 

or energy maps have been proposed to recreate the non-classical 

eceptive field of V1 for contour detection. This proposal has been 

valuated with 40 images—this dataset could be considered the 

rst annotated ground truth proposed in the literature to validate 

ontour detection algorithms. This approach has been later on im- 

roved by [26] by modeling spatial facilitation and surround in- 

ibition with local grouping functions and Gabor filters, respec- 

ively. Recently, in [27] , a modulation of double opponent cells 

s performed to extract more complex edge properties from color 

nd texture. This was complemented by incorporating the second 

isual area and accounting for feedback connections [28] . Subse- 

uent experiments demonstrated that modeling various surround 

odulations, typical in neurons of the visual cortex, boosts the 

erformance of edge detection [28] . A combination of three Gabor 

lters at different scales was proposed in [7] , followed by a PCA 

nd a machine-learning classifier. This leads us to the next group, 

hich is learning-based. 

Classical learning-based algorithms: The challenge of edge de- 

ection in natural scenes has motivated the development of the 

earning-based algorithm. One of the first learning approaches for 

oundary detection has been presented in [14] , which uses differ- 

nt filters to extract gradients from brightness, color and texture. 

he authors then train a logistic regression classifier to generate a 

robabilistic boundary (Pb). Later on, different variants of Pb de- 

ectors have been proposed, like the one from [29] . These new 

roposals focus on global information besides using local informa- 

ion like the original approach. They are referred to as globalized 

robability of boundary (gPb). In these approaches, the gradients 

re computed by three scales for each image channel individually. 

n [30] , a conditional random field-based approach has been pro- 

osed. Its maximum likelihood parameters are trained given the 

mage edge annotations. This model captures the continuity and 
4 
requency of different junctions by a continuity structure. On the 

ontrary, the usage of a sparse code gradient has been proposed in 

31] . In this case, the patches are classified by a support vector ma- 

hine. Lastly, the usage of a Bayesian model has been considered in 

32] . edge-maps have been predicted by a Sequential Monte-Carlo- 

ased approach using different gradient distributions. The random 

orest framework is also considered for edge detection, where each 

ree is trained independently to capture complex local edge struc- 

ures [33] . 

Deep learning algorithms: During the last decade, CNNs have be- 

ome the standard model in computer vision. It has been shown 

hat the internal representation of object classification networks 

elies on edges [34] . The first CNN-based model for edge detec- 

ion has been proposed in [35] . In this approach, like in most DL 

odels, given an annotated edge-map dataset, the network learns 

o predict edges from an RGB image. Since this original work, sev- 

ral methods have been proposed [11] ; the backbone of most ar- 

hitectures is VGG16 [36] . From this architecture, just the convolu- 

ional layers are used (13 convolutional layers). The parameters of 

his architecture are obtained by training the network in the Im- 

geNet dataset as a classification problem. Then, the network is 

ne-tuned by training it on the datasets conceived for boundary 

etection. This is the case of HED [19] , RCF [4] , BDCN [5] , CATS

6] , Chrnet [37] and many others, our proposal does not follow 

his procedure for the training stage, therefore, DexiNed uses less 

ime for the training and the testing but still reaches the state-of- 

he-art results. In HED [19] a multi-scale network together with a 

eep supervision technique is configured. Hence, each VGG block 

as as an output an edge prediction, which can be considered as a 

pace scale representation. RCF [4] uses the same configuration as 

ED, but instead of getting edges from each VGG block, it extracts 

dges from each layer on the blocks. On the contrary to previous 

pproaches, in Chrnet [37] different refinement blocks are used to 

erge the outputs from the third backbone block till the block 

ve; it also considers two outputs from the two last refinement 

locks to predict the final edge-map. With this procedures the 

dge-map of Chrnet is sharper and cleaner than the previous ap- 

roaches that use the same training procedure and architecture as 
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Fig. 3. Flowchart of proposed architecture (DexiNed). It consists of two building 

blocks a Dense Extreme Inception Network and an upsampling Net ( USNet ). 
ED. Even though the quantitative performance of the aforemen- 

ioned methods overcomes the state-of-the-art of classical learning 

lgorithms, the predicted edge-maps are not as sharp as expected, 

nd somehow detected edges are coarse. Hence, Context-Aware 

racing Strategy (CATS) [6] is proposed to improve the edge-map 

rispness. Moreover, with the last advances of transformer learn- 

ng models EDTER—Edge Detection with TranformER is proposed 

38] , the main drawback of this proposal is that it has more than

00M parameters, which will require more computation resources. 

Although most of the DL-based models for edge detection have 

een based on the usage of VGG16, there are a few approaches 

hat are based on other models, like ResNet50 [39] which is used 

n [4] . With these variants, tinny improvements have been ob- 

ained, about 1% . Despite that, in the current work VGG16 is go- 

ng to be described as the standard architecture used in the edge 

etection approaches. Most of the models based on VGG16 out- 

erform traditional edge detection methods in the standard edge 

etection datasets such as BSDS [1] , NYUD [40] , PASCAL-CONTEXT 

41] and MDBD— Multicue Dataset for Boundary Detection [7] . De- 

pite this, even after obtaining high-ranked performance, some of 

hese methods still present drawbacks or lack of generalization or 

oarser predicted edge-maps, see results in Fig. 1 . For instance, it 

an be observed that in some cases the generated edge-maps do 

ot predict the human perceptual edges. Contrary to those mod- 

ls, our proposal predicts cleaner, thinner and more accurate edges 

sing the same fusion strategy and slightly modified loss function 

rom HED, RCF, and BDCN. Additionally, new lighter models like 

DC (Lightweight Dense CNN for Edge Detection) [42] have being 

roposed inspired on the Dexined approach. 

. Proposed approach 

This section presents the proposed architecture and the loss 

unction used to train the model proposed in the manuscript. 

.1. Dense extreme inception network for edge detection 

DexiNed is designed to allow end-to-end training without the 

eed to weight initialization from pre-trained object detection 

odels, like in most DL-based edge detectors. In our previous work 

43] we observed that the edge features computed in shallow lay- 

rs are often lost in the deeper layers. This inspired us to design 

n architecture similar to Xception [44] but with two parallel skip- 

onnections that materialize on all the edge information computed 

cross different layers. DexiNed can be interpreted as a collection 

f two sub-networks (see Fig. 3 ): the dense extreme inception net- 

ork (Dexi) and the upsampling network (USNet). Dexi receives 

n RGB image as input processing it in different blocks, whose 

eature-maps are fed to USNet. 

.2. Dexi 

The Dexi architecture contains six blocks acting similarly to an 

ncoder. Each block is a collection of smaller sub-blocks with a 

roup of convolutional layers. Skip-connections couple the blocks, 

s well as their sub-blocks (depicted in light gray and blue rectan- 

ular shapes in Fig. 3 ). The feature-maps generated at each of the 

locks, are fed to a separate USNet to create intermediate edge- 

aps. These intermediate edge-maps are concatenated to form a 

tack of learned filters. At the very end of the network, these fea- 

ures are fused to generate a single edge-map. 

Each sub-block (blue rectangles in Fig. 3 ) constitutes two con- 

olutional layers (the number of kernels is specified on the right 

ide of the blue rectangles). All kernels are of size 3 × 3 . In the

ery first block, convolutions are with a stride of 2, hence s 2 in its

ame. Each convolutional layer is followed by batch normalization 
5 
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6 https://labelbox.com/ 
nd a rectified linear unit (ReLU). From Block 3 (light grey rect- 

ngles) the last convolutional, of the last sub-block, does not con- 

ain the ReLU function. Rectangles in red are max-polling operators 

ith a 3 × 3 kernel size and stride of 2. 

The multitude of convolutional operations over the depth of 

rocessing causes important edge features to vanish [43,45] . To 

void this issue we introduce parallel skip-connections, inspired by 

e et al. [39] and Zhang et al. [46] . From the third block (Block-

) forward, the output of each sub-block is averaged with another 

kip-connection termed second skip-connections—SSC (green rectan- 

les on the right side of Fig. 3 ). After the max-pooling operation, 

hese SSC average the output of connected sub-blocks before sum- 

ation with the first skip-connection—FSC , green rectangles on the 

eft side of Fig. 3 . In parallel to this, the output of max-pooling lay-

rs is directly fed to subsequent sub-blocks. For instance, the sub- 

locks of block-3 receive input from the first max-pooling; and the 

ub-blocks of block-4 receive input with a summation of the first 

nd second max-pooling. 

.3. USNet 

The upsampling network (USNet) is a conditional stack of two 

locks. Each one of then consists of a sequence of one con- 

olutional and deconvolutional layer that up-sample features on 

ach pass. The block-2 gets activated only to scale the input 

eature-maps from the Dexi network. This block is iterated un- 

il the feature-map reaches a scale twice the size of the GT. 

nce this condition is met, the feature-map is fed to the block- 

. The block-1 processes the input with a kernel of size 1 ×
 , followed by a ReLU activation function. Next, it performs a 

ranspose convolution (deconvolution) with a kernel of size s × s , 

here s is the input feature-map scale level. With the last de- 

onvolution of block-1, the feature-map reaches the same size as 

he GT. The last convolutional layer does not have an activation 

unction. 

We considered three strategies for upsampling blocks: bi-linear 

nterpolation, sub-pixel convolution and transpose convolution. 

his is an influential factor in generating thin edges, a desired fea- 

ure that, for example, enhances the visualization of edge-maps. 

e considered this point in the design of DexiNed and a detailed 

valuation of it is presented in Section 5 . 

.4. Loss functions 

The DexiNed can be formalized as a regression mapping func- 

ion ð (:) ; in other words, ˆ Y = ð (x, y ) , where the input image is

 ∈ R 

m ×d×c and y ∈ { 0 , 1 } m ×d×1 is the corresponding ground truth 

dge-map, m , d, and c are image sizes—c is set to 3 due to the

GB channels used in the model’s training. The output ˆ Y corre- 

ponds to a set of predicted edge-maps, ˆ Y = [ ̂  y 1 , ̂  y 2 , . . . , ̂  y N ] , ˆ y n is

he edge-map predicted from the n DexiNed predictions, N is the 

umber of outputs from DexiNed (rectangles in gray, Fig. 3 ) and 

he last fused edge-map. ˆ y N corresponds to the result of the last 

onvolutional layer, which fuse the concatenation of all ˆ y n (rect- 

ngles in gray), when the weight is initialized by 1 / (N − 1) . Note

hat ˆ y N has the same size as y . The loss function in our prelim-

nary work [21] was considered from HED [19] (weighted cross- 

ntropy). In the current work loss functions from HED, RCF and 

DCN have been evaluated; after such evaluation the BDCN loss 

unction, L , has been selected with a little modification as depicted 

elow: 

 (y> 0) = 1 

y −
y + + y −

; w (y< =0) = 1 . 1 

y + 
y + + y −

, 

 n = 

1 

(−w [ y · log θ ( ̂  y n ) + (1 − y ) · log (1 − θ ( ̂  y n ))]) 
(1) 
m · d 

6

hen, 

 = 

N ∑ 

n =1 

λn · l n (2) 

here w is the weight of the cross-entropy loss, y − and y + denote 

egative and positive edge samples in the given GT, respectively. θ
s the sigmoid function. The λ is a set of hyper-parameters used to 

alance the number of positive and negative samples. Those values 

ill be given in the implementation details section. 

. Datasets 

This section details the datasets used for training and evalua- 

ion of the proposed approach as well as compares it with state- 

f-the-art approaches. 

.1. Training with BIPED dataset 

The second contribution of the current work is the update of 

he original benchmark dataset, referred to as Barcelona Images 

or Perceptual Edge Detection (BIPED), which has been initially 

resented in our previous work [21] . The update presented in 

he current work is detailed below. All the images contained in 

he seminal work have been processed again. The BIPED dataset 

ontains 250 real-world images, of 1280 × 720 pixels, of urban 

nvironments. Ground truth (GT) edge-maps have been generated 

sing the crowdsourcing tool Labelbox 6 , by a manual annotation; 

s stated in [8] , there are three methods to generate GT for 

dge detection datasets: i ) the synthetic images generated from a 

reviously created edge-map, ii ) manual edge annotation from an 

mage, and iii ) GT preparation from a consensus and agreement 

riterion given edge-maps generated from different edge-detectors. 

igure 4 presents an illustration from the BIPED dataset together 

ith its annotated edges. The pink lines in Fig. 4 (b) , which are

olylines, correspond to edges used to draw open contours in 

he scene; on the contrary, blue lines, which are polygonal lines, 

orrespond to closed contours in the scene. Figure 4 ( c) shows the 

dge-map corresponding to the Fig. 4 ( a ). The annotation process 

as been applied to the whole dataset. To generate high-precision 

dge-maps, each image was processed following four steps: 

1. Computer vision experts annotate all the edges on each image, 

just one annotation per image. 

2. The administrator (also a computer vision expert) reviews the 

output of the previous step. 

3. The obtained GTs, are used to train the HED model [19] and 

validate the sanity of predicted edges. 

4. Considering the results of HED, the administrator crosscheck 

the entire dataset correcting mistakes and adding new anno- 

tations. This version was presented in [21] . 

5. With the updated version of LabelBox, improvements in Zoom 

tool make us to see additional details that were not considered 

in the previous version, due to the lack of deep appreciation 

on BIPED images. This make us to add more annotation in al- 

most the whole images. The differences between initial annota- 

tions (BIPEDv1) and current one (BIPEDv2) can be appreciated 

in Fig. 5 ; new annotation tools allow to draw very tinny edges 

from the given images. 

The administrator remains the same person throughout the 

hole process to ensure the same set of criteria is applied to all 

nnotated images. The BIPED is a suitable dataset to benchmark 

he results of edge detection algorithms. To this end, we have re- 

eased it publicly for the benefit of the research community. 

https://labelbox.com/
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Fig. 4. A sample image from the BIPED dataset. 

Fig. 5. Difference of BIPED GT previous annotation and the proposed version, BIPED-GTv2. 
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.2. Testing with benchmark datasets 

A comprehensive qualitative evaluation of the proposed model 

as been conducted on the datasets most widely used in the liter- 

ture for edge, contour, and boundary detection, namely MDBD [7] , 

SDS50 0 [1] , BSDS30 0 [14] , NYUD [40] , PASCAL-CONTEXT [41] (re-

erred hereinafter to as PASCAL), CID [13] , and our proposed BIPED. 

ithin this list, MDBD is the most relevant dataset to the pre- 

ented model, given its annotations correspond to true edges. The 

ther datasets are more appropriate for the task of boundary and 

ontour detections. Despite that, results on all these datasets are 

resented to show the effectiveness of our approach and have a 

etter comparison to the state-of-the-art. 

MDBD: The Multicue Dataset for Boundary Detection was col- 

ected for psychophysical studies of object boundary perception in 

omplex images. Multiple cues such as luminance, color, motion 

nd binocular disparity have been considered in its design [7] . The 

DBD is composed of short binocular video sequences of natural 

cenes (containing 10 frames per scene). Hundred high-definition 

mages of size 1280 × 720 were extracted from these videos. Each 

mage has been annotated by several participants (six times for 

dge detection and five times for boundary detection). The pro- 

osed DexiNed architecture has been evaluated with the edge an- 

otations of this dataset. Usually, in this dataset, 80% of images 

re used for training, while the remaining are used to evaluate 

he learning-based algorithm. Following this, we randomly selected 

0% of images to evaluate the performance of DexiNed. The mod- 

ls considered for quantitative evaluations have been trained again 

or a fair comparison with the 80% selected in the current work. 

CID: The Contour Image Database is a set of 40 gray-scale im- 

ges with their corresponding ground truth contours [13] . The size 

f the images in this dataset is 512 × 512 . The main limitation 

f this dataset is related to the small number of annotated im- 

ges. The proposed DexiNed architecture has been evaluated on 

he entire dataset, similar to previous works in the literature (e.g., 

26,28] ). This dataset is difficult for DL-based approaches due to its 

ray-scale nature and missed annotations in some of the provided 

mages. 

BSDS500: Berkeley Segmentation DataSet (BSDS), the first ver- 

ion has been published in 2001 [14] and consists of 300 im- 

ges split up into 200 for training and 100 for validation, termed 
7 
SDS300; the last version [1] , adds 200 new images for the test- 

ng. Every image in BSDS is annotated at least by 5 subjects, this 

ataset contains images of 481 × 321 . This dataset is mainly in- 

ended for image segmentation and boundary detection, therefore, 

s it will be illustrated in the next sections, for the edge detection 

urpose some images are not well annotated. Generally, to evalu- 

te the performance of a DL model in BSDS500, the new 200 im- 

ges are used for testing while the BSDS300 is used for network 

raining purposes. As DexiNed is trained only on the BIPED dataset, 

he qualitative evaluation depicted in Section 5 split up the results 

nto two parts: BSDS300 and BSDS500. The images considered for 

ualitative comparison are taken from the test part of BSDS500 

nd the validation part from BSDS300. 

NYUD: New York University Dataset is a set of 1449 RGBD im- 

ges from 464 indoor scenarios, intended for segmentation pur- 

oses. This dataset is split up into three subsets—i.e., training, vali- 

ation and testing sets. The testing set contains 654 images, while 

he remaining images are used for training and validation pur- 

oses. In the current work, just the testing set has been selected 

or evaluating the proposed model, since DexiNed has been trained 

ust with BIPED. Although most of the images in NYUD are fully 

nnotated for segmentation, there are a few of them with poor 

nnotations. This fact (missing edges in some images) affects the 

uality of DL-based edge detection approaches. 

PASCAL: The PASCAL [41] is a popular dataset used for segmen- 

ation with a wide variety of object categories. Currently, most of 

he major DL methods for edge detection use PASCAL for train- 

ng and testing (e.g., [19,4] ), due to its ground-truths correspond- 

ng to scenes different to the ones depicted in BSDS. This dataset 

ontains 11,530 annotated images, however, just around 5% of ran- 

omly selected images (505) have been considered for testing Dex- 

Ned. Although the images in PASCAL have more diverse labeled 

ata, most of the images are annotated only for a couple of objects 

ven though the scene has a vast number of features. 

. Experimental results 

This section first describes the metrics used for the evaluations; 

hen, details about the implementation and settings of the pro- 

osed approach are provided. Finally, a large set of experimental 

esults is presented together with comparisons with state-of-the- 
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rt approaches. Again, most of the non-edge detection datasets in 

he literature are used just for qualitative evaluation and, for edge 

etection, BIPED and MDBD approaches, are used for quantitative 

valuations and comparisons with DexiNed. 

.1. Evaluation metrics 

Edge detection algorithms can be evaluated following two 

pproaches. Indirectly through their impact on other computer 

ision tasks [10] . Directly in comparison to human-drawn edges. 

n this work, we opted for the latter, which is a common practice 

n the evaluation of benchmark datasets. These evaluation metrics 

re as follow: 

1. Optimal Dataset Scale (ODS) computed by using a global 

threshold for the entire dataset; 

2. Optimal Image Scale (OIS) computed by using a different 

threshold on every image; 

3. Average Precision (AP). The F-measure—F = 

2 ×Precision ×Recall 
Precision + Recall 

. 

.2. Implementation notes 

The proposed DexiNed architecture has been trained from 

cratch without relying on pre-trained weights. This is a unique 

eature of the proposed model. Most state-of-the-art networks de- 

end on pre-trained weights of the ImageNet dataset. On aver- 

ge, DexiNed converges after 9 epochs (15 epochs in [21] ) with a 

atch size of 8 using Adam optimizer and learning rate of 10 −4 —

ecreasing at 10 and 15 epochs by a factor of 0.1, the weight decay 

onsidered for the training was 10 −8 . The training procedure takes 

round 1 day in a TITAN X GPU input with color images of size

52 × 352, 4 80 × 4 80 for MDBD. The weights for fusion layer are

nitialized as: 1 
N−1 (see Section 3.4 for details on N). After a hyper- 

arameter search to optimize DexiNed, the best performance was 

btained using kernels of size 3 × 3, 1 × 1 and s ×s on the differ-

nt conv and deconv layers, with Xavier initializer [47] in Dexi and 

ormal distribution in the last conv and deconv layers of USNet. 

he λ of the loss function is set to [0.7, 0.7, 1.1, 1.1, 0.3, 0.3, 1.3]. 

We randomly selected 200 images of BIPED to train and vali- 

ate DexiNed. The remaining 50 images were used for testing. To 

ncrease the number of training images, a data augmentation pro- 

ess has been performed as follows: i) given the high-resolution 

ature of BIPED images, each image is split in half along its width; 

i) similarly to HED, each of the resulting images is rotated by 15 

ifferent angles and crop by the inner axis oriented rectangle; iii) 

mages are horizontally flipped, and finally iv) two gamma correc- 

ions have been applied (0.3030, 0.6060). This augmentation pro- 

ess resulted in 288 images per each of the given images. 

.3. Architecture setup 

This section presents evaluations on different DexiNed config- 

rations. The first sub-section presents details on the upsampling 

ethods and the merging process selected for estimating the edge- 

aps. In the second sub-section, the advantage of using skip con- 

ections are presented. 

.3.1. Upsampling methods and DexiNed predictions 

Regarding the selection of the best upsampling method, in our 

reliminary work [21] three approaches were evaluated. In that 

valuation it is shown that the upsampling performed by the 

ranspose convolution with trainable kernels gives the best re- 

ults. Hence, in the current work it is also selected as upsam- 

ling method. On the other hand, regarding the strategy used to 

erge the different outputs—Output1, Output2, Output3, Output4, 

utput5, Output6, DexiNed-f, DexiNed-a—the DexiNed architecture 
8 
 Fig. 3 ) has been empirically evaluated as performed in [21] show- 

ng that the best results are obtained from DexiNed-f and DexiNed- 

. DexiNed-f corresponds to the result obtained by the fusion pro- 

ess at the end of the DexiNed architecture (see Fig. 3 ), while 

exiNed-a corresponds to the edge-maps obtained from the aver- 

ge of all DexiNed predictions (DexiNed-f included). It is shown in 

21] that both merging strategies reach similar quantitative results; 

ence hereinafter results from both merging strategies are pre- 

ented; in some cases, due to space limitations, just results from 

exiNed-f are depicted, in those cases results are named as Dex- 

Ned. 

.3.2. Ablation study 

This subsection presents a quantitative study of the critical Dex- 

Ned parts and settings. As our model is composed of two types of 

kip connections (rectangles in green on the left and right sides 

n Fig. 3 ) a study of different numbers of skip-connections is per- 

ormed. It is presented in Fig. 6 (le f t) —DexiNed0 C does not use 

kip-connections, DexiNed1 C uses just one skip connection (left 

ide in Fig. 3 ); DexiNed2 C uses the two connections. The usage 

f two skip-connections (DexiNed2C) improves the performance of 

he proposed architecture. 

The proposed architecture has been also trained with differ- 

nt loss functions to evaluate its performance. Loss functions from 

he following approaches have been considered: HED [19] , RCF [4] , 

DCN [5] , and BDCNloss2 (it is a slightly modified function from 

DCN [5] ). As illustrated in Fig. 6 (right) the modified BDCN loss 

unction outperforms its counterparts with almost 1% . Finally, to 

hoose the best DexiNed performance, we have evaluated its pre- 

iction in different epochs, up to 25 epochs. As it can be appre- 

iated in Fig. 6 (mid d le ) the best performance is reached when 11

pochs are considered. In the following sections of this manuscript, 

he comparisons of DexiNed performance on the different edge de- 

ection datasets correspond to the architecture DexiNEd2C, with 11 

pochs, and using the BDCNloss2 function, termed just as DexiNed. 

.4. Quantitative comparison 

This section presents comparisons of DexiNed with the state- 

f-the-art approaches on edge detection datasets. Additionally, a 

omparison of the generalization capability in two datasets (i.e., 

DBD and BIPED) is studied; in other words, a study that shows 

esults of generalization from one dataset to another dataset is pre- 

ented. As introduced in Section 1 , BSDS [1] is not considered since 

his dataset cannot generalize results on edge domain. The state- 

f-the-art approaches for edge, contour, and boundary detection 

11] have been selected for comparison with DexiNed; these ap- 

roaches are the following: RCF [4] , BDCN [5] , and CATS [6] . In

rder to perform a fair comparison, these approaches have been 

rained on two datasets intended for edge detection—the MDBD 

nd our BIPED datasets. It should be noticed that the same aug- 

entation processes has been applied in all the cases; additionally, 

n the case of MDBD, all models have been trained with the same 

raining set, instead of randomly selecting images from the MDBD 

ataset, as performed in most of the publications. 

Table 1 and Fig. 7 show different evaluations for DexiNed 

DexiNed-f and DexiNed-a) and the approaches from the state 

f the art mentioned above. Results from both scenarios are 

resented—trained and tested on the same dataset and cross- 

valuations (i.e., trained in a dataset and evaluated in the other 

ataset). It can be appreciated that DexiNed reaches the best per- 

ormance (in all three metrics ODS, OIS, and AP) when trained and 

ested in the same dataset. Furthermore, DexiNed reaches also the 

est result if trained in BIPED but evaluated in the MDBD dataset. 

n the other hand, regarding the dataset generalization capabil- 

ty, considering the ODS evaluation metric, we know that the best 
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Fig. 6. (le f t) Evaluation of DexiNed architecture with (DexiNed1C: 1 connection; DexiNed2C: 2 connections) and without (DexiNed0C) skip-connections. (mid d le ) DexiNed 

performance evolution during training. (right) Evaluation with different loss functions. 

Table 1 

Quantitative results: The performance of DexiNed model and BIPED dataset are compared to the last DL based models and the edge detection based 

dataset, MDBD [7] . 

Methods Trained on Tested on ODS OIS AP Tested on ODS OIS AP 

RCF [4] (2019) 

MDBD [7] 
MDBD [7] 

.879 .888 .926 

BIPED 

.814 .828 .871 

BDCN [5] (2020) .887 .891 .793 .854 .863 .768 

CATS [6] (2022) .891 .899 .809 .813 .831 .791 

DexiNed-f (Ours) .891 .896 .930 .787 .807 .844 

DexiNed-a (Ours) .894 .902 .951 .789 .813 .875 

RCF [4] (2019) 

BIPED BIPED 

.849 .861 .906 

MDBD [7] 

.839 .854 .865 

BDCN [5] (2020) .890 .899 .934 .855 .864 .692 

CATS [6] (2022) .887 .892 .817 .837 .840 .496 

DexiNed-f (Ours) .895 .900 .927 .863 .871 .867 

DexiNed-a (Ours) .893 .897 .940 .862 .874 .919 

Fig. 7. ( le f t) Precision-Recall curve of BIPED test set. ( right) Precision-Recall curve of MDBD [48] . 
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erformance is reached when trained and evaluated in the same 

ataset. Hence, we propose to analyze the loss in performance 

hen evaluated in another dataset different to the one used for 

raining. This loss in performance is smaller if the different ap- 

roaches are trained in BIPED, on average just 3,74% of the de- 

rease in performance is appreciated when evaluated in MDBD; 

n the contrary, this loss in performance reaches an average of 

,14% if trained in MDBD and evaluated in BIPED. Our empirical ob- 

ervation suggests that the bad performance of the model trained 

n MDBD largely depends on the datasets used for training—i.e., 

mount of data, variability of data, and accuracy of annotations. In 

he case of the MDBD dataset, the main problem lies in the lack 

f consensus of the provided annotations as detailed in Section 1 ; 

he same problem happens during the annotation of BSDS—see 

llustration in Fig. 2 . This consensus is required in order to be 

ure about the annotations. In order to have accurate information, 

atasets with multiple annotations require 2 or 3 consensus anno- 
[

9

ations, which enforce the removal of some edges. These missed 

dges affect the quantitative evaluations of trained models—since 

ome true edges are not contained in the ground truth but, on 

he contrary, they may have been estimated by the networks. This 

ad performance is not only appreciated with DexiNed trained on 

DBD but also in other architectures. 

.5. Qualitative comparison 

This section presents just some illustrations as qualitative com- 

arisons of the edge-maps predicted from all the models consid- 

red during the quantitative comparison in the previous section. 

ote that all these models have been trained on BIPED; Fig. 8 

hows edge-maps of the evaluated architectures (trained on BIPED) 

hen used in the datasets detailed in Section 4.2 . Qualitative re- 

ults, similar to those presented in Fig. 8 , but trained on MDBD 

7] , are presented as supplementary material. Some comments and 
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Fig. 8. The results of a few state-of-the-art architectures trained on the proposed BIPED dataset. Note that the ground truth of these datasets, except for BIPED and MDBD, 

correspond to boundary and segmentation tasks. 

c

b

r

onclusions from the analysis of the obtained results are presented 

elow: 

• BIPED: For this dataset two illustrations are presented since 

this dataset is used for training the selected models consid- 

ered in the comparisons. These two illustrations correspond to 

the best and the worst ODS results from DexiNed. As shown 

in Fig. 8 , edge-maps predicted by BDCN, CATS, and DexiNed 

are clean and accurate representations. Perceptually, we can say 

that edge-maps predicted by BDCN and DexiNed contains more 

correctly detected edges. On the contrary, edge-maps predicted 

by CATS are cleaner but containing less predictions. As a con- 

clusion, while searching for a model that predicts more edges 
10 
but also less artifacts, DexiNed provide us those requirements 

without compromise them. 
• Other datasets: MDBD, CID, BSDS30 0, BSDS50 0, NUYD, and PAS- 

CAL. As shown in Fig. 8 , results in these datasets are also sim- 

ilar to predictions from the test set on BIPED. The CATS model 

shows cleaner edge-maps but with less edges than DexiNed. A 

more perceptual difference of this claim can be observe in the 

predictions of MDBD, CID, NYUD, and PASCAL. Looking at the 

last row in Fig. 8 , which corresponds to PASCAL dataset, several 

edges on the floor of the scene have been detected by DexiNed, 

but none of the other models are able to detect them. 

To finish, the second version of BIPED gives the generalization 

obustness to the models considered for comparison. Overall, in all 
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he datasets presented in Fig. 8 , thanks to the unique characteris- 

ics on BIPED, there are most perceptual edges predicted in the im- 

ges. Concerning to the DexiNed architecture, the predictions given 

y this model are cleaner than from its counterparts and without 

ompromising true edge lost, the training procedure is simpler that 

n any other DL based models considered for comparison. DexiNed 

oes not need pre-training weights, it can converge in less time 

han other models but still reach the state-of-the-art results. 

. Discussion and limitations 

DexiNed is an edge detection dedicated architecture. The prin- 

ipal objective of this article is to demonstrate that with a 

roper dataset there is no need for pretrained weights or hyper- 

arameters tuning at the level of the network’s layers, as most 

f the SOTA models do. Table 1 shows that DexiNed reaches the 

est result, training from scratch in a short period of training time. 

ith fewer hyper-parameters tuning, DexiNed reaches its peak 

erformance in epoch 11, while previous studies report peak per- 

ormance only after epoch 20. Although our proposal has more 

han double the number of parameters than BDCN [5] or CATS [6] , 

ts computational time is less in training and testing. This is pos- 

ible thanks to a significant reduction of hyper-parameters search 

nd the specific design of DexiNed’s architecture. 

DexiNed contains 35M parameters, despite its deep architec- 

ure, the edges are not eliminated in the feature-maps of the 

eeper layers (a common problem for deep edge detectors), 

nd thanks to the contribution of USNet, the output of Dex- 

Ned contains a large number of true edges with cleaner out- 

ines in comparison to the SOTA models. Another contribution of 

his manuscript is the slightly modified loss function from BDCN 

5] and HED [19] . This modification helps to adapt and get a bet-

er cost of the training process while using the mini-batch size in 

erms of considering the mean loss instead of a sum. The final ver- 

ion allows for reaching the best result in MDBD and BIPED. As 

tated in the previous sections, we cannot quantitatively compare 

ith BSDS, or other similar datasets used by the community, since 

hose datasets do not have edge-level annotations since they are 

ntended for contour or boundary detection. 

As mentioned in Section 5.4 , DexiNed has a good performance 

hen trained in BIPED but evaluated in MDBD, somehow this 

how the good generalization of the proposed model. Unfortu- 

ately, there are not more edge detection datasets to evaluate this 

eneralization feature. 

The input color space of DexiNed (like most other deep net- 

orks) is RGB, whose channels are highly correlated in natural im- 

ges (the average correlation for R, G and B channels in ImageNet 

s about 0.85 [49] ). Due to this high intra-axes correlation, edges 

etect in each channel largely overlap. Contrary to this, our visual 

ystem decorrelates the input space into color-opponency, which 

acilitates detecting information (e.g., edges) in both chromatic and 

uminance channels. We propose this as future work to investigate 

he impact of input color space on the performance of DexiNed or 

ther edge detection models. 

. Conclusion 

This paper proposes a robust edge detection model that ex- 

ibits a great degree of generalization to new scenes. To this end, 

rst, we present a benchmark dataset carefully designed for the 

ask of edge detection named Barcelona Images for Perceptual Edge 

etection (BIPEDv2). Second, we design a network with parallel 

kip-connections (DexiNed) that learns to detect edges without the 

eed for ImageNet pre-trained weights. We show the generaliza- 

ion power of our approach by training the network on a single 

ataset and evaluating it on other benchmark datasets. In other 
11
ords, by training DexiNed with only BIPEDv2 we can get com- 

etitive results in the MDBD dataset for edge detection. DexiNed 

s more than double in the number of parameters compared to 

he state-of-the-art architectures based on VGG16, nevertheless, it 

eaches similar FPS and does not lose edge feature maps in the 

eeper layers of the network. Overall, our results show the pos- 

ibility of training a deep-learning model of edge detection from 

cratch in an end-to-end fashion. These findings open the future 

ork in the exploration of smaller networks for the task of edge 

etection by reducing the number of hyper-parameters settings. 
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