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Abstract

This paper unveils the discoveries and outcomes of the
inaugural iteration of the Multi-modal Aerial View Image
Challenge (MAVIC) aimed at image translation. The pri-
mary objective of this competition is to stimulate research
efforts towards the development of models capable of trans-
lating co-aligned images between multiple modalities. To
accomplish the task of image translation, the competition
utilizes images obtained from both synthetic aperture radar
(SAR) and electro-optical (EO) sources. Specifically, the
challenge centers on the translation from the SAR modality
to the EO modality, an area of research that has garnered
attention. The inaugural challenge demonstrates the fea-
sibility of the task. The dataset utilized in this challenge is
derived from the UNIfied COincident Optical and Radar for
recognitioN (UNICORN) dataset. We introduce an new ver-
sion of the UNICORN dataset that is focused on enabling
the sensor translation task. Performance evaluation is con-
ducted using a combination of measures to ensure high fi-
delity and high accuracy translations.

1. Introduction

The practice of sensor fusion, which involves integrat-
ing data from multiple sensors to provide a more compre-

hensive understanding of an environment or system, has
been a longstanding concept [2, 10]. The earliest known
example of sensor fusion dates back to the 1930s, when
Robert Watson-Watt pioneered the first practical radar sys-
tem that fused acoustic and radar data to facilitate advanced
decision-making [6].

While the Multi-modal Aerial View Object Classifica-
tion (MAVOC) challenge primarily deals with fusing data
from the Synthetic Aperture Radar (SAR) and Electro-
Optical (EO) modalities [13], the Multi-modal Aerial View
Image Challenge (MAVIC) focuses on the conversion of
data from one modality to another. A data conversion ap-
proach aims to leverage the unique advantages of both SAR
and EO sensors while mitigating their limitations. Notably,
SAR sensors are capable of operating in any lighting con-
ditions due to their self-illuminating nature and can even
penetrate through atmospheric obstructions like clouds and
vegetation, which EO sensors are subject to. However, in-
terpreting SAR images can be challenging and requires ex-
pert knowledge and specialized algorithms [14]. Addition-
ally, the scarcity of publicly available SAR data presents an
obstacle to creating robust deep learning training sets. Con-
version of SAR images into EO images thus presents an
opportunity to address these issues.

The problem addressed by the challenge shares some
similarities with those approaches proposed in the literature
for gray scale / near infrared (NIR) / thermal image col-
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Figure 1. Overview of IR2VI architecture (illustration from [12]).

orization, or color transfer functions (e.g., [22], [16], [28],
[3], just to mention a few). These problems are generally
tackled through the use of Generative Adversarial Networks
(GANs) [9], which allows the transformation of informa-
tion between domains. Most GAN based approaches have
focused on supervised contexts, where a paired of correctly
registered data are provided. The unpaired problem, which
is more challenging, could be tackled by a GAN architec-
ture in the unsupervised context under a cyclic structure
(CycleGAN) [32]. CycleGAN learns to map images from
one domain (source domain) onto another domain (target
domain) when paired images are unavailable [24]. This
functionality makes models appropriate for image to image
translation in the context of unsupervised learning. More
recently, diffusion models have been proposed giving supe-
rior results than state-of-the-art generative models [5]. Un-
fortunately, the main limitation with these approaches lie on
the large amount of resources required for their training.

Moreover, it is worth noting that generative models are
susceptible to producing hallucinations, which refer to out-
puts that deviate from the original source information. Such
occurrences can be especially consequential in sensor trans-
lation tasks, where the preservation of information between
modalities is crucial. Therefore, the central aim of the
MAVIC challenge is to facilitate the development of reli-
able translation models that are capable of producing ex-
plainable, interpretable, and trustworthy outputs.

The process of converting SAR images to EO images
is not a trivial task, as it poses several challenges related
to non-collocated sensor collections, pixel intensity asso-
ciation, image size, ground sampling distance (GSD), and
image noise differences, as noted in [30]. Different ap-

proaches could be followed for converting SAR to EO
modality, and although similarities exist with the methods
mentioned above, the particularity of the problem warrants
a deep study on the advantages and drawback of each of the
many possibilities evaluated with quantitative and qualita-
tive metrics.

The development of models that can translate between
sensors of different modalities can enable the utilization
of established algorithms. For example, in automatic tar-
get recognition (ATR) tasks, models are often trained on
one modality and tested on other modalities. By translating
SAR images to EO images, traditional EO models can be
used on SAR data.

Image translation has been popular for image anal-
ysis covering iso-domain modalities (visual-to-visual),
between-domain (infrared-to-visual) and across-domain
(SAR-visual) imagery. The concept of image translation
was popularized in 2017 as demonstrated by Isola et al. [9]
for photo generation and object semantic segmentation over
a variety of experiments using conditional generative adver-
sarial networks (cGAN):

• Semantic labels ↔ photo

• Architectural labels → photo

• Map ↔ aerial photo

• Grayscale → color photos

• Edges → photo

• Sketch → photo

• Day → night
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Figure 2. Example of colorization task (illustration from [11]).

Figure 3. Overview of WGGAN architecture (illustration from [27]).

Many researchers extended theses types of methods on
the same data sets such as a combination of the condi-
tional variational autoencoder GAN and conditional latent
regressor GAN called the BicyleGAN [31]. Additionally,
using the same datasets, another popular method is the Du-
alGAN that focuses on training over two sets of unlabeled
images from two domains [26]. Building on these ideas
included within-domain and cross-domain methods for sea-
sonal changes such as colorization and object variation us-
ing the Multimodal Unsupervised Image-to-image Transla-
tion (MUNIT) framework [8]. Using only a single domain
model, the STARGAN can do image transition to many dif-
ferent domains [4].

A common use of the image-to-image translation sup-
ports a method of transfer learning conducting domain
adaptation. The goal is to extract domain agnostic features,
then reconstruct a domain specific image with cycle con-
sistency, and predict labels from the agnostic features to si-
multaneously learn from the source domain and adapt to the
target domain [15]. Additional methods have been applied
to medical imagery as MEDGAN [1]. Review papers high-
light the different image translation methods developed in
recent years [17].

Among these developments, there was consideration for
image-to-image translation for EO and infrared data. Liu
et al. [12] utilized the above methods to develop the IR2VI
method and compared to the CycleGAN, DUALGAN, and
STARGAN (Figure 1). Results demonstrate that the IR2VI

adds semantic visible information and object shape infor-
mation to the original thermal images while CycleGAN and
UNIT were not able to do cross-modality image translation.
The StarGAN translated images lack texture information,
however, the blur shape information did support the VI ob-
ject detector.

Following up with mage colorization using the No-
reference Image Quality Evaluation metric, a texture net
was shown superior [11] (Figure 2) and a WGGAN: A
Wavelet-Guided Generative Adversarial Network for Ther-
mal Image Translation [27] (Figure 3) further improved the
analysis. Key to these approaches was the features used in
the GAN to support multimodal image translation.

2. Challenge

The 2023 MAVIC challenge is held jointly with the Per-
ception Beyond the Visible Spectrum (PBVS) workshop
and is a complement to the MAVOC challenge. The MAVIC
challenge is designed to facilitate innovate approaches in
multi-modal sensor translation. Participants are evaluated
on using a weighted average of the L2, LPIPS [29], and
FID [7] score. The challenge centers on the advancement
of multi-modality translation networks. Participating teams
are provided with a collection of image pairs, consisting
of SAR and EO modalities, and are tasked with perform-
ing image translation from one modality to the other. Upon
completion, the teams’ generated outputs are evaluated on
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Figure 4. Example of failed translation from SAR to EO (order
= SAR input, translation, ground truth). We draw attention to the
aircraft in the image. The translated image illustrates an example
of the generative network hallucinating.

a separate test set that was previously withheld. The perfor-
mance of the teams is subsequently monitored and recorded.
Emphasis is placed on generating high quality translations
with an absence of hallucinations. Figure 4 illustrates an
example of a failed translation that contains hallucinations.

The manuscript is organized as follows. Section 2 pro-
vides an introduction to the challenge dataset, evaluation
metrics and competition phases. Section 3 summarizes
the results obtained by different teams. Then, Section 4
presents a short description of the top approaches evalu-
ated from submissions. The conclusion is presented in Sec-
tion 5, followed by an appendix containing information on
the teams.

2.1. Dataset

The present dataset is derived from the UNICORN
dataset. Unlike the existing UNICORN dataset, which was
annotated with respect to target chips, the current dataset is
constructed by dividing co-aligned scenes into 256 × 256
patches. Figure 5 provides examples of these image pairs.
These patches form image pairs that are used for training.
The allocation of training and validation sets is performed
according to the protocol presented in Table 1.

Table 1. Details of the UNICORN dataset used for training, vali-
dation, and testing.

Modality # Train # Val # Test

SAR 68,151 80 3,586
EO 68,151 80 3,586

2.2. Evaluation

The submissions are evaluated using an average of three
metrics:

1. LPIPS: Learned Perceptual Image Patch Similarity

2. FID: Frechet Inception Distance

3. L2: Pixel-wise L2 norm

(a) Example 1

(b) Example 2

(c) Example 3

(d) Example 4

Figure 5. Examples of (SAR, EO) image pairs pulled from the
training set. The EO image is on the left while the SAR image is
on the right. These are 256 × 256 pixels. This shows examples of
buildings, cars, and trees. These have been aligned and re-sampled
to ensure consistent size.

The selection of the three evaluation metrics serves the pur-
pose of promoting the production of high-fidelity trans-
lations. Specifically, the L2 metric is incorporated into
the evaluation process to mitigate against the occurrence
of generative hallucinations. By enforcing pixel-wise L2
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norms, the L2 metric effectively preserves the overall struc-
ture of the target image. However, the L2 metric has the
drawback of prioritizing low-frequency details while elim-
inating high-frequency ones. The combined utilization of
the LPIPS and FID metrics complements the L2 metric by
ensuring the presence of high-resolution details in the gen-
erated images. Additionally, these metrics function to en-
sure that the generated images are well-aligned with the tar-
get image domain, thus contributing to the overall accuracy
and effectiveness of the translation process.

The LPIPS metric is constructed based on the VGG-16
architecture [21]. LPIPS is a technique that leverages deep
feature representations of two images to compute a simi-
larity metric that closely approximates human perceptual
judgments. The FID metric, on the other hand, is estab-
lished using a pre-trained InceptionV3 [23] network, and its
computation employs the feature layer 64. The FID metric
provides a measure of the dissimilarity between two proba-
bility distributions. When applied to an activation layer of
a neural network, it enables an effective comparison of the
feature spaces of two images. The FID is calculated as:

FID = |µ− µω|+ tr (Σ + Σω − 2 (ΣΣω)) . (1)

where µ corresponds to the mean, “tr” is the trace, and Σ
corresponds to the covariances. The subscript ω indicates a
fake or generated image [20].

In order to consolidate the three metrics, a normalization
procedure is executed to ensure that each metric is scaled
between the range of 0 and 1. The normalization methodol-
ogy differs among the metrics. In the case of the L2 norm,
an image normalization technique is employed to restrict
the values of the input images being compared between the
range of 0 and 1. For the LPIPS metric, the normalization
process necessitates the scaling of the output weights. Fi-
nally, the FID metric is normalized via the application of a
weighted arctan activation function.

Final Score =
2
π arctan(FID) + LPIPS + L2

3
(2)

2.3. Challenge Phases

The challenge began January 11, 2023, and the test data
was released March 1, 2023. The testing phase ended on
March 7, 2023 with team submissions finalized.

3. Challenge Results
The challenge results are summarized in this section.

This challenge had 52 teams participate with 5 teams sub-
mitting results during the development phase and 8 teams
submitting results in the testing phase, see Table 2. Result-
ing submissions from top three teams can be seen in Fig-
ure 8.

Table 2. Top Performing Teams in Competition

Rank Team Total ↓ LPIPS ↓ FID ↓ L2 ↓
1 USTC-IAT-United 0.09 0.25 0.02 0.01
2 pokemon 0.14 0.35 0.04 0.01
3 wangzhiyu918 0.14 0.38 0.02 0.01
4 ngthien 0.18 0.43 0.10 0.01
5 Wizard001 0.26 0.50 0.27 0.02
6 hanhai 0.30 0.30 0.59 0.01
7 u7355608 0.33 0.54 0.43 0.02
8 jsyoon 0.33 0.46 0.53 0.01

4. Methods

This section briefly summarizes the approaches used by
the teams that submitted their models and documentation
for prize consideration. Not all teams submitted their meth-
ods and are subsequently absent from this paper. We exam-
ine the submitted methods from the top teams. This section
consists of edited summaries submitted by each team.

4.1. Rank 1: USTC-IAT-United

Team USTC-IAT-United proposed a SAR2EO frame-
work, which is capable of converting SAR images into EO
images. For the characteristics of SAR images, a SAR im-
age pre-processing module is proposed to process SAR im-
ages. This module proves effective in experiments. They
also compared pix2pix [9], pix2pixHD [25], SPADE [18],
UNIT DDPM [19] and other methods, and finally, chose
pix2pixHD as their base model through experiments. Fig-
ure 6 shows the flow chart of the proposed final solution for
the competition.

In the training phase, they first pass the SAR images
through a data pre-processing module, and then generate the
low-precision output after going through the low-precision
generative model model, and then discriminate the training
data and the low-precision model through the discrimina-
tor. The low-precision image and training data are fed into
the high-precision generator together to generate the high-
precision output, which is the final result. To make the fi-
nal result more high-definition, the output and training data
continue to be supervised by the discriminator. Similarly
the test set part goes through the same pre-processing mod-
ule and goes through two low-precision and high-precision
generators to get the final EO results. Finally their proposed
SAR2EO framework achieved better results and won the
first place in the competition.

On the whole, their proposed methods is made of four
optimized parts to generate high-quality high-definition
large images:

1. The generator is upgraded from U-Net to a multi-level
generator (coarse-to-fine generator)
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Figure 6. Overview of team USTC-IAT-United’s model. It utilizes a four stage process to produce high quality translated images.

2. The discriminator is upgraded from patch GAN to a
multi-scale discriminator (multi-scale discriminator)

3. The matching loss and content loss based on discrimi-
nator features are added to the optimization objective

4. The proposed data pre-processing module is effective
for SAR images.

Based on the experimental results, the proposed scheme
demonstrates the ability to generate images of compara-
tively high quality on the test set. Furthermore, its perfor-
mance is favorably rated upon human visual inspection. Ad-
ditionally, the USTC-IAT-United’s image generation model
exhibits a relatively fast processing speed.

4.2. Rank 3: wangzhiyu918

Team wangzhiyu918 developed a SAR-to-Optical im-
age translation network based on the pix2pix [9], which is
a milestone method for applying GAN to image-to-image
translation. Figure 7 overviews their proposed method.
They adopt a U-Net-based network as their generator, which
takes 256 × 256 SAR images as inputs. The discriminator
uses the patchGAN structure to distinguish whether an in-
put image is real or fake. It can classify whether overlapping
patches are real or fake. Such a patch-level discriminator ar-
chitecture has fewer parameters than a full-image discrim-
inator and can work on arbitrarily-sized images in a fully
convolutional fashion. They train their model with vanilla
L1-Norm loss and Binary Cross Entropy (BCE) classifica-
tion loss.

Figure 7. Illustration of the architecture proposed by the
wangzhiyu91 team.

5. Conclusion
The 2023 edition of the MAVIC competition was orga-

nized with the goal of promoting research in sensor transla-
tion across multiple modalities. The inaugural competition
successfully demonstrated the feasibility of devising effec-
tive translation models, with participating teams submitting
methods that achieved notable success. The development of
such models holds significant potential for facilitating the
integration of SAR imagery into traditional EO algorithms,
thereby enhancing their overall utility. Furthermore, these
models have the potential to enable the accomplishment of a
range of important tasks, including automatic target recog-
nition (ATR), among others.
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SAR Input Ground Truth USTC pokemon wangzhiyu

Figure 8. Comparison of model inputs, ground truth, and outputs from top-three teams.

521



Acknowledgements
We would like to thank Bob Lee for providing logistic

support for the 2023 PBVS MAVOC Challenge. We would
also like to thank Angel Wheelwright for helping run the
competition.

References
[1] Karim Armanious, Chenming Jiang, Marc Fischer, Thomas
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