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Abstract—This work proposes a novel approach that integrates
super-resolution techniques with off-the-shelf object detection
methods to tackle the problem of handling very low-resolution
thermal images. The suggested approach begins by enhancing
the low-resolution (LR) thermal images through a guided super-
resolution strategy, leveraging a high-resolution (HR) visible
spectrum image. Subsequently, object detection is performed
on the high-resolution thermal image. The experimental results
demonstrate tremendous improvements in comparison with both
scenarios: when object detection is performed on the LR thermal
image alone, as well as when object detection is conducted on the
up-sampled LR thermal image. Moreover, the proposed approach
proves highly valuable in camouflaged scenarios where objects
might remain undetected in visible spectrum images.

Index Terms—Thermal imaging, super-resolution, deep learn-
ing, object recognition, computer vision, low-resolution images,
yolo v8, camouflage detection.

I. INTRODUCTION

In several applications, including surveillance, search and

rescue efforts, and industrial inspections, thermal imaging has

developed into a useful technology. Thermal cameras help us

to see beyond the range of visible light by catching the infrared

radiation that things release. The inherent low-resolution of

the images that are recorded, however, is a key downside of

thermal imaging and can make the object detection task more

difficult. This restriction is a significant obstacle in a variety

of real-world settings where accurate object identification is

essential.

Researchers have looked into using super-resolution tech-

niques to increase the resolution of thermal imaging as a

way to get around this problem (e.g., [1], [2], [3]). A higher

level of visual fidelity is provided by super-resolution, which

seeks to recover high-frequency details and fine characteristics

from low-resolution images. Parallel to this, deep learning-

based object identification techniques, such as the well-known

You Only Look Once (YOLO) architecture, have proven very

effective at identifying and localizing items in photos.

To solve the problem of low-resolution thermal image-based

object recognition, a novel method is offered in this study

that blends super-resolution methods with deep learning-based

object recognition. The goal is to improve object identification

by enhancing the resolution of thermal images by utilizing

the strength of super-resolution algorithms. To achieve super-

resolution, a deep neural network architecture is used, which

makes use of both the statistical characteristics of thermal

imagery and contextual information. The high-resolution ther-

mal images are then sent into a deep learning model that has

already been trained to detect objects, doing away with the re-

quirement for specialist thermal object detection architectures.

This study’s main objective is to assess how well the

suggested method works for boosting thermal image resolution

and increasing object detection precision. Tests are done on a

variety of images to assess how well the proposed approach

outperforms more established low-resolution thermal image-

based object recognition methods. The enormous improve-

ments made possible by combining super-resolution and deep

learning-based object recognition are shown by the experi-

mental findings. The integrated strategy offers a full answer

for precisely identifying objects in thermal photography in

addition to improving the resolution of thermal images.

The remainder of the paper is divided into the following

sections: A review of pertinent literature in the fields of super-

resolution, thermal image processing, and object recognition is

given in Section II. The proposed methodology is explained in

Section III, along with the steps involved in super-resolution

and integration with deep learning-based object recognition.

The experimental setup is described in Section IV, together

with information on the dataset, the selected evaluation mea-

sures, and the overall experimental arrangement. Finally, con-

clusions are given in Section V.

II. RELATED WORK

This section presents a summary of the most recent and

relevant contributions to the topics tackled in the current

work. Section II-A summarizes the state-of-art on image super-

resolution, going from SR on visible spectrum images to SR on

thermal images. Then, Section II-B presents object detection

approaches and finally, Section II-C describes recent thermal

image datasets freely available in the literature.
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Fig. 1. Guided Thermal Image Super-resolution approach presented in [4].

A. Image Super-Resolution

The literature on single image super-resolution (SISR) has

witnessed significant advancements over the years, with a

recent focus on leveraging deep learning techniques to achieve

improved results compared to conventional methods. Convolu-

tional neural networks (CNNs) have particularly demonstrated

remarkable capabilities in enhancing the quality of super-

resolution (SR) outcomes. Dong et al. [5] introduce the

SRCNN, which pioneered the concept of end-to-end mapping

between interpolated LR images and their corresponding HR

counterparts, achieving state-of-the-art performance. Building

upon this work, [1] proposes FSRCNN, which extracts feature

maps from LR images and performs the up-sampling in the

final layer, leading to further performance improvements.

Inspired by the success of SRCNN, subsequent studies

started to explore deeper networks with residual learning, [6]

and [7] employ deep CNN architectures with residual connec-

tions to enhance SR accuracy. To expedite the training process,

[8] introduces EDSR, a network that eliminates the batch-

normalization layer and leverages residual learning [9]. It is

worth noting that most of these CNN-based approaches aim to

minimize the mean-square error (MSE) between the SR and

ground truth (GT) images, which can sometimes result in the

suppression of high-frequency details. This supervised training

process typically requires pairs of pixel-wise registered SR and

GT images to compute the MSE.

All the aforementioned approaches have been initially de-

signed for visible spectrum images. Over the last decade,

novel strategies have emerged to address the thermal im-

age super-resolution challenge. In [2], the authors introduce

TISR-DCNN, a supervised CNN architecture featuring both

residual and dense connections. This architecture effectively

captures high-level features and facilitates the reconstruction

of thermal images. Several unsupervised architectures have

been proposed (e.g., [10], [11], [12]) in recent years to tackle

the thermal image SR problem. These unsupervised super-

resolution approaches leverage unpaired images to overcome

the constraint of pixel-wise registration without relying on

specific degradation assumptions. They achieve this through

the utilization of CycleGAN [13] architectures, which profi-

ciently map information from one domain (LR thermal image)

to another domain (HR thermal image). To promote the

advancement of novel techniques within this domain, a thermal

image super-resolution challenge has been annually organized

in the Perception Beyond the Visible Spectrum workshop, held

in conjunction with the CVPR conference (see [10], [14],

[15]).

Although interesting results have been made in achieving

×2 and ×4 super-resolutions, the task of restoring infor-

mation with a large up-scaling requires more attention. In

recent years, guided super-resolution (GSR) approaches have

been proposed as a solution for such a challenging problem.

Guided super-resolution approaches use information from one

domain, usually a HR cheap visible spectrum camera, as

a guidance (e.g., [16], [17], [18]) to drive the SR process

of LR images. This strategy has been used in different SR

domains (e.g., depth-map SR, infrared SR, thermal SR, and

some others). In the current work, the guided thermal image

SR problem is considered. In this context, the authors of

[19] propose to overcome the limitation of thermal imaging

using a multiconditioned guidance network (MGNet). The

MGNet uses HR visible spectrum images to enhance the

super-resolution of thermal UAV images. HR visible spectrum

images contribute rich information from the given scene (e.g.,

texture and edge features, semantic details) that is useful for

the SR process. To leverage this information, the authors

introduce the multicue guidance module (MGM) to effectively

integrate this image information from visible images to guide

the process of thermal UAV image super-resolution. In [20]

the authors propose to use a generative model, referred to as

Dual-IRT-GAN, to simultaneously tackle the super-resolution

and defect detection problems in thermal images. The visibility

of flawed areas in the resulting high-resolution images is

enhanced by using defect-aware attention maps derived from

segmented defect images. Finally, in [4] several GSR models

for thermal images have been proposed in the context of

a challenge organized in the 2023 Perception Beyond the

Visible Spectrum workshop; from this challenge and inspired

by ChaSNet [21] and Swin Transformer [22], the ANT INS
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team devised TCP-SRNet, a SR Network blending Channel

Split Convolutions for extracting local features and Swin

Transformers for capturing spatial relationships. This network

enhances super-resolution by combining both. It is trained with

inputs semi-matched, first with ×2 upscaling using L1 loss,

and then with additional LSGAN and SSIM losses. The final

output is an average of these two models’ outputs. On the

other hand, the GUIDED-SR team introduces a two-stream

network for enhancing LR thermal images using HR RGB

images as guides. Shallow features from LR and RGB images

are concatenated and fused using cascaded NAF Blocks [23].

HR image reconstruction yields a super-resolution outcome.

The training involves L1 and MSE loss in two steps. Finally,

the TU-PAC team tackles guided super-resolution challenges

using an Attention-based Pixel Adaptive Convolution (APAC)

layer [24], enhancing misaligned thermal images with guide

images. Their network involves Encoder, Guide, and Decoder

branches, refining guides with attention mechanisms and up-

scaling thermal features. The model that reaches the best result

from the challenge has been selected and is going to be used

in the current work.

HRth

SRth
Object
Detection

Object
Detection

IoU

GT
objects

IoU

Objects

ObjectsLRth

BICth
Object
Detection Objects

IoU

Guided
SR

Fig. 2. Object detection evaluation.

B. Object Recognition

Object detection is a fundamental task in computer vision

that involves localizing and identifying objects within an im-

age. Over the years, numerous methods have been proposed to

address this challenge, with significant advancements achieved

through the use of deep learning techniques. One influential

approach in object detection is the You Only Look Once

(YOLO) architecture, which has gained widespread popularity

due to its real-time processing capabilities and high accuracy.

The YOLO framework, introduced by [25], revolutionized

object detection by formulating it as a regression problem.

Unlike traditional methods that employ region proposal al-

gorithms, YOLO directly predicts bounding boxes and class

probabilities in a single pass through the network. This design

allows YOLO to achieve remarkable speed while maintaining

competitive accuracy. Several iterations and improvements

have been made to the original YOLO architecture, including

from version 2 to the latest YOLO v8 [26], which is part of

the present work and which has further enhanced the detection

performance.

YOLO uses a deep convolutional neural network (CNN) to

extract meaningful features from the input image. It divides the

image into a grid and applies a set of predefined anchor boxes

to predict bounding boxes and associated class probabilities

for each grid cell. This efficient design enables YOLO to

detect multiple objects simultaneously across different spatial

locations. Additionally, YOLO incorporates techniques like

Feature Pyramid Networks (FPN) [27] and multi-scale training

to improve detection accuracy for objects of various sizes.

The YOLO framework has demonstrated outstanding perfor-

mance across a wide range of object detection applications,

including pedestrian detection (e.g., [28], [29]), vehicle de-

tection (e.g., [30], [31]), video surveillance (e.g., [32], [33])

and general object detection (e.g., [34], [35]). Its real-time

processing capability has made it especially valuable for real-

time video analysis and applications that require fast and

accurate object detection. In the current work, YOLO is

used as the object detection component to perform accurate

object recognition on thermal images. While YOLO has been

extensively used in the context of visible light images, its

application to thermal imagery is a novel direction that holds

great potential. By combining YOLO with the proposed super-

resolution technique, the research aims to enhance the reso-

lution of thermal images and improve the accuracy of object

identification, opening up new possibilities for object detection

in thermal imaging domains.

C. Datasets

The field of super-resolution thermal imaging has seen

the emergence of various datasets, although with different

sizes and purposes. While some datasets are suited for object

detection, tracking, biometrics, or medical applications, only a

few are specifically intended for super-resolution tasks. Among

the available thermal datasets, the data set presented by Davis

et al. [36] consists of 284 thermal images captured on a

college campus using a Raytheon 300D camera. Olmeda et al.

[37] propose a dataset of 15224 thermal images acquired of

urban scenes with a vehicle-mounted Indigo Omega imager.

Hwang et al. [38] use a FLIR-A35 camera to capture more

than 41,500 thermal images. Wu et al. [39] presents a high-

resolution dataset with seven scenes captured with a FLIR

SC8000 camera, which provides a resolution of 1024×1024

pixels.

The combination of visible and infrared images has gained

significant attention in the field of computer vision, especially

for object detection tasks. The M3FD [40] dataset has emerged
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as a valuable resource for researchers in this area. The M3FD

dataset includes synchronized systems consisting of binocular

infrared sensors and an optical camera. It offers a diverse range

of scenarios captured at locations such as the Dalian University

of Technology campus and the State Tourism Holiday Resort at

Golden Stone Beach in Dalian, China. With over 8,400 images

available for fusion, detection, and fused-based detection, as

well as an additional 600 independent scene images for fusion,

the dataset provides ample data for comprehensive evaluation.

Furthermore, the M3FD dataset incorporates manual label-

ing for 34407 instances across six target categories, including

People, Cars, Buses, Motorcycles, Lamps, and Trucks. This

labeling facilitates object detection research, although the

dataset creators acknowledge the possibility of some labeling

errors or omissions due to limited human resources.

III. PROPOSED APPROACH

This section presents the approach proposed in the current

work to address object detection in very LR thermal im-

ages, using a guided super-resolution model. The proposed

approach combines a guided super-resolution technique with

the YOLO network for object recognition. By integrating these

two components, the proposed approach aims to enhance the

resolution of thermal images while simultaneously improving

the capabilities of object detection.

The first task is to define and configure the dataset to use in

the next sections. For the training and testing phase, the M3FD
dataset [40] is used with the following distribution train-

ing=3360 images, validation=740 images, and testing=100

images. In addition, for the test images, downsampling to the

size of 40x30 pixels is performed (i.e., ×16 factor). Some

examples of LR thermal images used as input to detect objects

are shown in Fig. 3 (left col.). These images are the starting

point for the super-resolution techniques used in the current

work.

Regarding the guided super-resolution approach, in the

current work, a model for super-resolving a LR thermal image

with the aid of an HR RGB image is considered. Given

that the imaging pipelines used to acquire RGB and thermal

images differ, the proposed method employs a two-stream

network to enhance the LR thermal image. The architecture

proposed by the winning team in Track 2 of the Thermal
Image Super-resolution Challenge - PBVS2023 [4], within

the context of CVPRW, serves as inspiration. The network

begins by inputting the RGB and bicubic up-sampled LR

images into a layer responsible for extracting shallow features

from each image type. Subsequently, these extracted features

are concatenated and transmitted through feature fusion layers,

which are specifically designed to combine multi-modal data.

The feature fusion layers employ cascaded NAF Blocks [23].

Finally, the super-resolution output is reconstructed using a

HR image reconstruction layer. Figure 1 illustrates the network

architecture.

To enhance the resolution of the LR thermal image, the

proposed model leverages the complementary data provided

by the RGB and thermal images. By integrating the shallow

feature extraction, feature fusion, and HR image reconstruction

procedures, the model effectively improves the visual quality

and details of the super-resolved thermal image. The next

section provides a detailed analysis and evaluation of this

approach’s experimental results.

Finally, the object detection task in super-resolver thermal

images is performed by using the YOLO v8 [26] framework,

the model YOLOv8x, and the pre-trained weights yolov8x.pt
are used, in addition, a fine-tunning is applied using thermal

images of the M3FD dataset described in Section II-C. The

code and the pre-trained weights are obtained from the YOLO

official page1. YOLOv8 framework is employed due its proven

real-time processing capabilities and high accuracy in object

detection tasks. YOLOv8 consistently outperformed them in

terms of speed and precision, especially when dealing with

the intricacies of thermal images. Its architecture, which

formulates object detection as a regression problem, proved to

be particularly effective for the dataset. It should be mentioned

that the proposed strategy is also valid if any other object

detection model is used.

IV. EXPERIMENTAL RESULTS

This section presents the results of the proposed approach,

objects detected in SR thermal images, and compares them

with results obtained when HR and LR thermal images are

considered. The effectiveness of each component in the pro-

posed work is illustrated, providing insights into the contri-

bution of each module to the overall performance. Figure 2

depicts the process of comparing the number of detected

objects, the Intersection over Union (IoU) metric between the

predicted bounding box and ground truth bounding box when

the overlapping area is ≥ 50% (IoU50 metric) is considered.

As presented in Table I, the total number of objects in

the GT images is 993. In contrast, the results in super-

resolved thermal images achieve a recognition of 405 objects,

which represents a significant improvement when compared

to the lack of recognition in the LR images. It should be

mentioned that these 405 detected objects have, on average, an

IoU50 = 0.8176, which is an excellent value in object detec-

tion tasks—0 means completely fails and 1 a perfect detection.

Another value used to evaluate the quality of detection is the

Precision of the detection task in this case an average value

of Acc. = 0.6819 is obtained. While in the Mean Average

Precision value, an average of mAP = 0.355 is obtained.

The values displayed on the three evaluations correspond to

the average computed on the testing set (100 images) taking

into account all the categories and showing the relevance of

the proposed solution.

The proposed super-resolution approach demonstrates no-

table enhancements in object recognition performance when

compared to the LR images.

Qualitative results are depicted in Fig. 3, which shows

a comparison between the annotated objects in the ground

truth, and those detected in the bicubic interpolation and

1https://docs.ultralytics.com/models/yolov8/
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Low-Resolution GT Bicubic Interpolation Guided Super-Resolution

Objects = 17 Detected Objects = 0 Detected Objects = 7

Objects = 3 Detected Objects = 0 Detected Objects = 3

Objects = 16 Detected Objects = 0 Detected Objects = 7

Objects = 15 Detected Objects = 0 Detected Objects = 8

Objects = 3 Detected Objects = 0 Detected Objects = 3

Objects = 7 Detected Objects = 0 Detected Objects = 7

Fig. 3. Detected objects in LR thermal images (testing set) when a ×16 SR factor is considered.
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RGB GT Results on RGB Thermal GT Results on ×16 Guided SR

Obj.=1 Det. Obj.=0 (IoU=0.0; Acc.=0.0) Obj.=1 Det. Obj.=1 (IoU=0.566; Acc.=0.857)

Obj.=1 Det. Obj.=0 (IoU=0.0; Acc.=0.0) Obj.=1 Det. Obj.=1 (IoU=0.661; Acc.=0.379)

Obj.=1 Det. Obj.=0 (IoU=0.0; Acc.=0.0) Obj.=1 Det. Obj.=1 (IoU=0.563; Acc.=0.440)

Obj.=1 Det. Obj.=1 (IoU=0.0; Acc.=0.0) Obj.=1 Det. Obj.=1 (IoU=0.912; Acc.=0.882)

Obj.=1 Det. Obj.=0 (IoU=0.0; Acc.=0.0) Obj.=1 Det. Obj.=1 (IoU=0.715; Acc.=0.841)

Obj.=1 Det. Obj.=1 (IoU=0.0; Acc.=0.0) Obj.=1 Det. Obj.=1 (IoU=0.911; Acc.=0.862)

Fig. 4. Comparative results between visible (RGB) and thermal images in an object detection tasks in camouflaged environments—note that in the right
column (thermal image from the guided super-resolution approach) all pedestrians are correctly detected. These example images are part of the testing set.
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TABLE I
COMPARATIVE RESULT OF DETECTED OBJECTS ON THERMAL IMAGES. THE VALUES Acc., IoU50 AND mAP ARE THE AVERAGE VALUES COMPUTED ON

THE TESTING SET OF M3FD DATASET ON EACH CLASS OF THE SR RESULTS.

Class GT
Bic LR Results SR Results
# of detect. obj. # of detect. obj. Acc. IoU50 mAP

People 111 0 33 0.692 0.753 0.351
Car 662 0 335 0.685 0.820 0.659
Bus 33 0 12 0.804 0.879 0.396
Motorcycle 18 0 1 0.267 0.794 0.315
Lamp 115 0 12 0.587 0.823 0.117
Truck 58 0 12 0.573 0.852 0.293
Total 997 0 405 0.6819 0.8176 0.355

SR-resolved image respectively. The thermal LR images are

shown and the improvement in quality performance can be

observed with the use of the guided super-resolution technique

and the benefit when performing the object detection task

in different scenes compared with the classical bicubic inter-

polation technique. Figure 4 provides illustrations of visible

spectrum images and the corresponding SR thermal images.

These visualizations further validate the effectiveness of the

proposed super-resolution approach in achieving better object

recognition results in conditions where state-of-the-art YOLO

v8 is not capable to detect or wrongly detect objects. One

noteworthy application is the detection of camouflaged objects,

as illustrated in the six images in Fig. 4, where individuals

hidden in vegetation are either not correctly detected or remain

undetected.

V. CONCLUSIONS

To overcome the challenge of LR thermal image-based object

recognition, this research presents a novel strategy that com-

bines a SR method with deep learning-based object recog-

nition. The experimental results demonstrate the effective-

ness and superiority of the proposed strategy, showcasing

significant improvements in object identification precision and

quality images. By leveraging the power of super-resolution

algorithms and deep learning models, the resolution of thermal

images is enhanced, enabling the recovery of fine features

and accurate object identification. The outcomes of this study

contribute to the field of computer vision by expanding the

potential applications of thermal imaging technology and

providing new opportunities for enhanced object detection in

thermal images. These findings hold practical implications for

various industries, as well as for sectors such as security and

public safety. Future research can delve deeper into advancing

super-resolution techniques and exploring novel deep-learning

architectures for more sophisticated thermal image analysis.

Finally, it can be mentioned that the proposed methodol-

ogy is not without challenges. One of the most important

constraints of the present work is the need to have the

perfectly registered pair of thermal-visible images available to

perform the super-resolution technique. Also, the advantages

of the method include its ability to handle very low-resolution

thermal images and its integration with the YOLO network

for enhanced object detection.
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