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Abstract. The article presents a comprehensive methodology for deploying
OPC-UA models as a standard communication protocol, emphasizing their key
role in improving near real-time data exchange and operational efficiency within
industrial systems. A case study centered on a continuous flow scale sys-
tem within a grain factory that handles commodities such as corn, soybeans,
and wheat, illustrates how OPC-UA significantly improves speed, precision,
and consistency in weight measurements, thereby fostering a smarter and more
sustainable agricultural future. The primary objective of the study is to pro-
vide a roadmap for the development of industrial system controls leveraging
OPC-UA architecture. This involves delineating and implementing control
modules based on OPC-UA, utilizing cost-effective solutions and high-level
programming languages for creating servers and clients (e.g., Python, Java,
Android, Node-RED). By seamlessly integrating UML-based design method-
ologies with OPC-UA, the article advocates for streamlined and standardized
development processes, particularly within the scope of Industry 4.0-driven
smart factories. The code is available at GitHub: https://github.com/hvelesaca/
OPC-UA-methodology, facilitating further research.

1 Introduction

The era of Industry 4.0 heralds the rise of smart factories, epitomizing modern manufactur-
ing with its fusion of automation, connectivity, and data-driven decision-making [1]. At the
core of smart factory success lies seamless information exchange between disparate systems,
enabling near real-time monitoring, control, and analysis. Industrial communication proto-
cols, such as field buses (e.g., Profibus, Modbus) or industrial Ethernet, and standards such as
classic OPC, OPC DA and newer standards like OPC UA, play a key role in providing stan-
dardized frameworks for interoperability and integration across heterogeneous environments
[2].

In industrial systems, the application of methodologies is important for the efficient de-
sign, construction, and deployment of solutions [3]. These methodologies, spanning activi-
ties from requirements analysis to maintenance, provide structured approaches to managing
resources, timelines, and budgets, while addressing risk management and ensuring quality
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[4]. Model-driven development methodologies, such as Model-Driven Architecture (MDA)
[5], Domain-Specific Modeling (DSM) [6], and the Unified Modeling Language (UML) [7],
foster coherence, traceability, and reuse throughout the development lifecycle. The use of
methodologies in industrial systems development is necessary to ensure efficiency, quality,
and effective management of the software lifecycle in industrial environments.

Seamless communication among systems, devices, and components is imperative to im-
prove operational efficiency and productivity in modern industrial landscapes [8]. Standard-
ized communication protocols such as OPC-UA [9], Modbus [10], Profibus [11], and MQTT
[12] play a crucial role in enabling interoperability, reliability, and scalability. These proto-
cols ensure coherence, compatibility, and clear guidelines for data sharing and error manage-
ment, empowering organizations to effectively address changing business needs and techno-
logical advancements [13].

This article presents a methodology for developing and deploying OPC-UA models to
establish a standardized, secure, and interoperable communication framework for data ex-
change and control between PLCs and vertical IT systems (e.g., SCADA, MES) in industrial
environments. Furthermore, the proposed methodology is applied to the development of the
OPC-UA platform as a case study for a continuous flow scale system in a grain marketing
company.

To address this work in detail, the manuscript is organized as follows. Section 2 intro-
duces some related works of design methodologies based on model-driven industrial systems
development and communication protocols in industrial processes. Section 3 presents the
proposed methodology for the implementation of OPC-UA in industrial applications. Then,
section 4 illustrates how the methodology can be applied to developing the OPC-UA platform
using a system of continuous flow scales as a case study. Finally, conclusions are presented
in Section 5.

2 Background

The development of industrial systems usually involves a three-layered approach, where
OPC-UA serves as a bridge between the machine layer (e.g., PLCs, physical devices, . . . )
and vertical enterprise-level IT systems. This section summarizes some of the most rele-
vant methodologies and techniques proposed for the development of industrial systems based
on model-driven approaches and the critical role of communication protocols in industrial
systems such as OPC-UA.

2.1 Design Methodologies for Model-Driven Industrial Systems Development

Model-driven development is used as an approach in the development of industrial systems,
offering structured methodologies to streamline the design, implementation, and maintenance
of complex systems. These methodologies provide systematic frameworks for modeling
various aspects of industrial systems, including requirements, architecture, behavior, and
data. Key methodologies in this domain include the Model-Driven Architecture (MDA) [5],
Domain-Specific Modeling (DSM) [6], and Unified Modeling Language (UML) [7], each
offering specific techniques and tools tailored to industrial system development.

For instance, Binder et al. [14] present a MDA process designed for Industry 4.0 applica-
tions, emphasizing the central role of models across the development lifecycle. This system-
atic approach aims to streamline the design, implementation, and evolution of Industry 4.0
applications by adhering to MDA principles. Through standardized modeling languages and
tools, the process promotes collaboration, interoperability, and scalability, ensuring alignment
with evolving technologies and business needs.
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Teilans et al. [15] propose a method for risk assessment in cyber-physical systems (CPS)
using DSM and simulation. By employing DSM and simulations, organizations can better
identify and analyze risks linked with CPS deployments. This method facilitates a thorough
understanding of the vulnerabilities, dependencies, and potential failure scenarios of the sys-
tem, allowing proactive risk mitigation strategies. Through the integration of DSM and sim-
ulation, the approach provides a structured and systematic framework for the evaluation of
CPS risk, ultimately improving system resilience and security.

On the other hand, Bruccoleri et al. [16] propose an object-oriented approach to analyze
and design flexible manufacturing control systems (FMCS) using UML. By adopting this
approach, organizations can develop a structured framework for modeling FMCS components
and interactions, leading to more effective analysis and design processes. Leveraging UML
facilitates the representation of FMCS elements, such as machines, processes, and control
strategies, in a standardized and intuitive manner. This approach generates the model as a
result in a diagram in UML format.

Finally, based on object-oriented principles, Gutierrez et al. [17] propose a metamodel
iMMAS for conceptualizing the industrial automation systems with a concrete syntax and
specific semantics that simplify the development and deployment of manufacturing control
systems. In these systems, the models can be transformed into PLC programs and OPC-UA
data models.

2.2 Communication Protocols in Industrial Processes

In industrial processes, effective communication between different systems, devices, and
components is crucial to ensure smooth operations and maximize productivity. With the
advent of digitalization and Industry 4.0, standardized communication protocols have be-
come indispensable for facilitating seamless data exchange and interoperability across vari-
ous industrial environments. This section provides an overview of related works focusing on
component communications within a factory, particularly in the context of Industry 4.0, and
discusses different protocols.

The first protocol presented is Open Platform Communications Unified Architecture
(OPC-UA) [9], which is highlighted as a prominent communication protocol for industrial
automation and control systems. It enables seamless data exchange between sensors, ma-
chines, and quality control systems, facilitating near real-time monitoring and analysis of
production processes from supervisory systems. Various studies, including one by Martinov
et al. [18], showcase OPC-UA’s effectiveness in different manufacturing sectors. Marti-
nov et al. demonstrate the implementation of OPC-UA to monitor equipment with variable
kinematics, collecting data from CNC systems without requiring a separate adapter for the
OPC server. The "Publisher-Subscriber" model in OPC-UA streamlines client-side data re-
trieval, enabling efficient modification of the kinematic schema. Nonetheless, challenges may
arise in environments with unreliable network connectivity or limited availability of OPC-UA
servers.

Although OPC-UA is recognized for its advantages in interoperability and security, al-
ternative communication protocols have also been explored in the context of smart facto-
ries. Message Queuing Telemetry Transport (MQTT) [12] has become increasingly popular
due to its lightweight and efficient messaging protocol. This protocol supports scalable and
reliable data exchange, making it ideal for near-real-time communication and IoT environ-
ments. The capability of MQTT to handle intermittent connections, low bandwidth, and con-
strained devices has made it a preferred choice for industrial and IoT applications, driving its
widespread adoption and ongoing evolution. Manowska et al. [19] explored the utilization
of the MQTT protocol in energy management systems for measurement, monitoring, and
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Table 1. Comparison of main features between OPC-UA and MQTT

Main features OPC-UA MQTT
Use Mainly used in industrial and

IIoT environments
Widely used in IoT and mes-
saging applications

Transport protocol TCP/UDP TCP
Patterns Pub/Sub, Client/Server Pub/Sub
Message format Text Type (JSON), Binary Text Type (Plain Text, JSON)
Scalability Large industrial systems IoT networks and distributed

systems
Session management Yes No
QoS No Yes
Encryption Yes Yes
Semantic Data Yes No

1. Define system
requirements

2. Identify
components and

relationship

3. Define object
types and

reference types

4. Create structure
model using UML

5. Create structure
model using OPC-UA

6. Create behavior
model using UML

7. Create
behavioral model
using OPC-UA

8. Create design
model using OPC-UA 

9. Transformation
of OPC-UA model

to XML

10. Server deploy
and client

connection
11. Testing

Figure 1. Overall pipeline of the proposed methodology.

control purposes. Their study delved into the application of MQTT in facilitating efficient
communication within industrial systems. Furthermore, Table 1 shows a comparison of the
main features between OPC-UA and MQTT.

3 Proposed Approach

This section presents the methodology followed for the design method for Model-Based In-
dustrial Systems Development. OPC-UA will be used for communication with the PLC. It
will also be used to control sensors, machines, and other devices in almost real-time, allowing
for continuous monitoring of performance and production in the plant. Figure 1 shows the
general process of the proposed approach.

3.1 Define system requirements

The initial stage of the design method involves defining the requirements of the system by
establishing what the system must accomplish. This process requires consultation with clients
and end users to achieve complete, consistent, and well-defined objectives. The definition of
requirements does not require excessive formality; a comprehensive list is sufficient. The
subsequent steps in the design method will be illustrated with examples tied to a consistent
case study throughout the process.

3.2 Identify components and relationships

After defining system requirements, the subsequent step involves identifying system com-
ponents and their relationships. Two strategies for component identification are proposed: a
grammatical analysis of the requirement text, focusing on nouns as potential components, and
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Figure 2. Structure Model elements using UML [20].

expert-based identification leveraging domain knowledge. The identified components should
be listed in a specified format (e.g., Components and Attributes).

For relationship identification, two strategies are also proposed. The first involves check-
ing, based on the identified components, if the requirement text specifies relationships be-
tween them. The second strategy relies on expert knowledge to identify relationships between
components. Both approaches result in a detailed list of relationships following a specified
format (e.g., Relationship Name, Source Component, Destination Component).

3.3 Define object types and reference types

After identifying the components and relationships of the system, the next thing is to define
the types based on those components and relationships, the type of objects of the components
will be defined, and the reference types of the relationships will be defined. The identified
object types should be listed in a specified format (e.g., Component, Object type).

Before defining the reference types, it is necessary to mention that within OPC-UA there
is a reference type called HasComponent whose semantics represent that the Destination
Component is part of the Source Component or, in other words, the Source Component has
the Destination component as part. If this generic reference type is used in the following steps,
it would no longer be necessary to define it as a new reference type. Identified references
should be listed in a specified format (e.g., Relationship Name, Reference Type).

3.4 Create Structure Model using UML

After having defined the Object Types and Reference Types that are present in the system,
the next step is to create the Structure Model using the UML notation. As an additional con-
sideration within the Structure Model, the Object Types are linked together using References
which are the instances of the Reference Types.

For each Reference Type that is not HasComponent, it is necessary to use UML classes to
define the reference type. It is worth mentioning that within the Structure Model, these UML
elements do not need to be linked to other UML elements unless it is strictly necessary. The
notation to define Reference Types in UML is shown in Fig. 2 (see column 2). Within the
Structure Model, Object Types will be represented by UML classes, while References will be
represented by UML Associations. The Fig. 2 (see column 1 and 4) shows this representation.
Finally, if a component contains attributes, these will be represented as UML classes, using
the Variable stereotype. They will be bound to the object type of the component they belong
to using the HasComponent reference. The Figure 2 (see column 3) shows this representation.
The work done by Lee et al. [20] is taken as a reference.

3.5 Create Structure Model using OPC-UA

Following the creation of the Structure Model in UML, the next step involves transforming
each Object Type, Reference Type, and Reference into the OPC-UA model. A crucial pre-
liminary step is establishing the Main Structure Node, which represents a node containing the
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ObjectType ReferenceType Variable
Reference

UML

OPC UA

Figure 3. Equivalence of UML elements to OPC-UA [20].

Figure 4. Base model of the FSM extracted and converted from the OPC-UA Program Information
Model.

most references to other nodes, often encompassing additional nodes. This node is visually
highlighted in yellow for identification purposes.

For all Object Types, excluding the Main Structure Node, it is imperative to define specific
instances of each ObjectType. This involves creating an Object from the ObjectType, and the
linkage between the created Object and the ObjectType is established using the HasType-
Definition reference. Instances of ObjectTypes are intricately linked to components – object
types defined in step 3 of the design method. The equivalence between UML elements and
their OPC-UA counterparts is described in Fig. 3. The work done by Lee et al. [20] is taken
as a reference.

3.6 Create Behavior Model using UML

The next step after establishing the Structure Model in UML involves defining the behav-
ior model using a finite-state machine (FSM) in UML notation. This entails outlining the
system’s behavior, including states, transitions, causes, and effects, based on the require-
ments. States represent system conditions, transitions denote state changes, causes trigger
transitions, and effects signify actions resulting from causes. A state diagram serves as the
foundational model, complemented by a table detailing transitions, source and destination
states, causes, and effects. This table guides the creation of different elements for the Be-
havior Model. The base model situates the states within the running state, as depicted in
Figure 4.
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UML

OPC UA State Transition Method Event

Cause Effect

Figure 5. Mapping elements of Finite State Machine in UML notation to OPC-UA.

Figure 6. Integration of the Structure and Behavior Models.

3.7 Create Behavior Model using OPC-UA

Based on the Behavior Model defined in the previous step, the next step to perform is the
transformation of each of the elements of the FSM in UML notation into OPC-UA elements.
Figure 5 shows the equivalence between each of the UML elements with OPC-UA.

When transitioning from UML to OPC-UA, it is crucial to follow a structured approach,
considering the transition table. This process involves several steps: creating objects based
on states defined in the FSM in UML format, generating objects from transitions, and cre-
ating methods using transition causes. Events in OPC-UA are represented by objects using
transition effects’ names. A detailed review of transitions is then conducted to establish
references (FromState, ToState, HasCause, HasEffect) between transitions and correspond-
ing objects/methods, facilitating state representation. If sub-state machines exist, references
(HasComponent) between states and sub-state machines are established. Finally, an object
of type ProgramStateMachineType [21] is defined to represent the main behavior node (e.g.
painted yellow to differentiate it), serving as the root for states, transitions, methods, and
events in the OPC-UA model.

3.8 Create Design Model using OPC-UA

To define the Design Model, it’s essential to integrate the Structure Model, Behavior Model,
and instances of the Structure Model. The initial step involves establishing a HasComponent
reference between the Main Structure Node and the Main Behavior Node, with the Main
Structure Node as the origin. In the final step, instances are defined using the Main Structure
Node as the parent. Instances are represented as objects, and the reference type connecting
the instances to the Main Structure Node is HasComponent. The result of applying these steps
is visually presented in Figure 6, showcasing the comprehensive integration of the Structure
and Behavior Models along with the respective instances.

3.9 Transformation from OPC-UA to XML model

In this step, the options are presented to transform the OPC-UA design model into XML for-
mat. Two alternatives are discussed; the first involves manually creating the model based on
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the transformation rules outlined in SubSec. 3.5, detailing the correspondence between OPC-
UA and XML elements. While comprehensive, this option is time-consuming and labor-
intensive. The second option proposes using a modeler, which streamlines the process and
reduces the workload associated with creating an XML-format model.

3.10 Server deployment and clients connection

Once the OPC-UA model has been obtained, it can be saved in XML format 3.9. This allows
us to export to different tools and to deploy in real scenarios. In our case, the Free OPC-
UA Modeler [22] is used to export the OPC UA models in XML. The OPC UA information
models in XML are then loaded and deployed into an OPC-UA Server as a working system..
To assess the system operation and its status anytime, three OPC-UA clients are created: a
Prosys OPC-UA client for desktop and Android mobile devices [23, 24] and a Node-RED
client [25]. These clients provide a dashboard to facilitate the supervision of the system.

3.11 Testing

After completion of server deployment, it is crucial to perform extensive testing of the system
to ensure its functionality, reliability, and compliance with requirements. Among the different
tests, the integration tests are carried out to validate the integration between different system
components (e.g., PLC, OPC UA server, sensors, actuators, and any other connected devices).
Another test to perform is the functionality test to evaluate whether all functions specified in
the system requirements are implemented correctly. This will include testing data reads and
writes, and correct operation of the FSM. Testing addresses issues such as communication
between components, requirements, error management, and security. Test results are used to
identify and correct potential defects or problems in the system before it is deployed to the
production environment.

4 Case Study

A system of continuous flow scales is considered as a case study to assess the validity of the
proposed methodology. It is necessary to obtain the accumulated weight of the grain that
flows into four silos located at different locations in the plant. There are four continuous-
flow weighing scales which consist of the following elements: loading and weighing hopper,
loading and discharge gate, hydraulic loading and discharge pistons, electro valves used to
operate the loading and unloading pistons, plus a set of three load cells that are responsible
for capturing the weight. Figure 7 shows a schematic of the scale system and its layout. The
next sections illustrate how the OPC-UA platform can be developed and deployed according
to the proposed methodology.

4.1 Define system requirements

Different types of grains move through the plant via conveyor belts and elevators to be stored
in different silos. Scales are strategically placed just before each silo, and while deactivated,
they act as a bypass, allowing grains to pass without capturing weight. Upon activation,
the following steps occur: 1) the discharge gate closes, awaiting corn arrival; 2) once the
predetermined batch is complete (e.g., 180 Kg), the loading gate closes, capturing the weight;
3) after weight capture, the discharge gate opens, releasing the corn; 4) once all grain is
released, the discharge gate closes, and the loading gate reopens. This cycle repeats until the
scale is deactivated or an error occurs.
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Figure 7. General outline of the Scale System project.

Table 2. Components of the Scale System and their relationships.

Relationship name Origin Component Target Component
It has a component Scale Loading Hopper
It has a component Scale Loading Hopper
It has a component Loading Hopper Loading Gate
It has a component Weighing Hopper Discharge Gate
It has a component Loading Hopper Loading Piston
It has a component Loading Hopper Load Electrovalve
It has a component Weighing Hopper Discharge Piston
It has a component Weighing Hopper Discharge Electrovalve
Control Loading Piston Loading Gate
Control Discharge Piston Discharge Gate
Control Loading Electrovalve Loading Piston
Control Discharge Electrovalve Discharge Piston

4.2 Identify components and relationships

Different components are identified, which are listed below: Scale (e.g., Weight, Batch, Ac-
cumulated Weight); Loading Hopper; Weighing Hopper; Loading Piston; Discharge Piston;
Load Electrovalve; Discharge Electrovalve; Load Cells; Loading Gate; Discharge Gate; Silo;
Conveyor Belt; Elevator. From this list of elements, different relationships between them are
identified and this correspondence is shown in Table 2.
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Table 3. Object types and reference types of the Scale System.

Component Object Type
Scale ScaleType
Loading Hopper HopperType
Weighing Hopper HopperType
Loading Piston PistonType
Discharge Piston PistonType
Loading Gate GateType
Discharge Gate GateType
Load Electrovalve ElectroValveType
Discharge Electrovalve ElectroValveType

Figure 8. (left) Structure Model of Scale System using UML. (right) Structure Model of Scale System
using OPC-UA.

4.3 Define object types and reference types

From the components obtained in the previous step, different types of objects are identified,
which are listed in Table 3. Also, based on the relationships between components, several
types of references are identified, which are listed below: It has a component (HasCompo-
nent) and control (Control).

4.4 Create Structure Model using UML

The next step is to create the structure model in UML format, and the transformation rules
established in Section 3.4 are taken into consideration. Figure 8 (left) shows the result of
generating the Structure Model in UML notation.

4.5 Create Structure Model using OPC-UA

After having obtained the Structure Model in UML format in the previous step, the next task
is applying the transformation rules established in Sec. 3.5, the transition from UML to OPC-
UA is carried out, generating the Structure Model with OPC-UA notation shown in Figure 8
(right).
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No Name Transition Cause Origin State Destination State Effect
1 HaltedToReady Reset Method Halted Ready Report Transition 1 Event/Result
2 ReadyToRunning Start Method Ready Running Report Transition 2 Event/Result
3 RunningToHalted Halt Method or Internal (Error) Running Halted Report Transition 3 Event/Result
4 RunningToReady Internal Running Ready Report Transition 4 Event/Result
5 RunningToSuspended Suspend Method Running Suspended Report Transition 5 Event/Result
6 SuspendedToRunning Resume Method Suspended Running Report Transition 6 Event/Result
7 SuspendedToHalted Halt Method Suspended Halted Report Transition 7 Event/Result
8 SuspendedToReady Internal Suspended Ready Report Transition 8 Event/Result
9 ReadyToHalted Halt Method Ready Halted Report Transition 9 Event/Result
10 FillingToFilling Internal Filling Filling Report Transition 10 Event/Result
11 FillingToDumping Internal Filling Dumping Report Transition 11 Event/Result
12 DumpingToDumping Internal Dumping Dumping Report Transition 12 Event/Result
13 DumpingToFilling Internal Dumping Filling Report Transition 13 Event/Result

Table 4. Finite State Machine transitions of Scale System.

Figure 9. (left) Finite State Machine diagram using UML. (right) Behavior Model using OPC-UA.

4.6 Create Behavior Model using UML

The next step in the pipeline is to create the behavioral model using the UML format. For
which the model proposed in SubSec. 3.6 is used as a basis and the Filling and Dumping
states are included within the Running state, which is part of the behavior of the Scale System.
Figure 9 (left) shows the result obtained from the UML diagram. Additionally, Table 4 shows
the transitions of each of the states which are numbered next to the arrows that represent the
transitions.

4.7 Create Behavior Model using OPC-UA

The next step is to take the elements defined in the previous step and apply the equivalence
rules defined in SubSec. 3.5 to convert each UML element to OPC-UA. Figure 9 (right) shows
the result obtained after applying the mapping rules. Additionally, the transitions established
in Table 4 are taken into consideration.

4.8 Create Design Model using OPC-UA

From the integration of the Structure Model, Behavior Model, and Structure Model instances,
Figure 10 shows the Design Model obtained.
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Figure 10. Design Model using OPC-UA.

4.9 Transformation from OPC-UA to XML model

The next step and based on the Design Model proposed in the previous step and with the help
of the Free OPC-UA Modeler [22], the Design Model is exported to XML format.

4.10 OPC-UA Server deployment

After obtaining the model in XML format, the next step is to deploy the server. The language
used is Python, so to carry out the deployment of the OPC-UA server, three files are created:
Server.py, Scale.py and Utils.py. The file Server.py contains the general structure of the server.
The file Scale.py defines a class that represents OPC-UA programs, specifically implements
the methods that contain the behavior of the FSM, and uses the semantics offered by OPC-
UA to validate transitions between states. Utils.py file contains additional functions for server
creation. The last step is the execution of the server.

The OPC UA server uses certificates and private keys to enable signed and encrypted
endpoints. Additionally, the server exposes nodes that represent each instance of a scale,
the FSM for each scale, and programs [21] that control the behavior of the FSM. Finally,
subscriptions are allowed for data exchange between client-server through an interactive en-
vironment. Figure 12 (right col) shows the logs of the server execution.

4.11 OPC-UA Clients

To visualize the information exposed by the server, three clients are implemented using differ-
ent programming languages. Figure 11 shows (top-lef) Prosys OPC-UA Client for Desktop,
(top-middle) Prosys OPC-UA Client for Android Mobile, (top-right) Node-RED client cre-
ated in a custom way and (bottom-left) shows the execution of the Node-RED client where
the interaction of the proposed scale system is shown.

4.12 Testing

Finally, the testing stage is carried out for which integration tests are verified and the cor-
rect communication of the OPC-UA server with the PLC, scales, sensors, and actuators is
validated. On the other hand, functionality tests are carried out and the correct reading and
writing of the variables exposed in the OPC-UA server is verified. In addition, the correct
functioning of the FSM is verified and the transitions between states and the correct change
of the variables are validated. Figure 13 shows the Node-RED client that has been connected
to the OPC-UA server, and the correct status of each of the nodes can be displayed in each
of the flows. Furthermore, Figure 12 shows the execution of the four scales at two different
moments in time, and the correct integration and operation of the variables, functions, and
FSM can be visualized.
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Java client Android client

Figure 11. Visualization of the OPC-UA clients in JAVA and Android languages.
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Figure 12. Visualization of variables and nodes in Node-RED flows for each scale.

5 Conclusions

The present study proposes an eleven-step design methodology for the development of in-
dustrial systems and it highlights the importance of structured design methodologies in the
implementation of OPC-UA within the context of industrial systems. The system generates
as a result a model with elements of OPC-UA in XML format that is published through a
server in any programming language. For this work, the Python implementation is used.
Furthermore, the use of a finite state machine is proposed to control the signals by changing
states. A case study is proposed using a continuous flow scale system. To visualize and con-
trol the system, high-level programming languages such as Python, Android, and Node-RED
are used. One of the most relevant characteristics that can be observed is the flexibility, scal-
ability, and availability of information, which are key elements in an industrial environment.
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Scale Programs, t=1 Server Log, t=1

Program Scale 01

Current State Suspended

Sub Current State Filling

Weight Batch 180 Kg

Weight Acumulated 186 Kg

176Kg176Kg

Program Scale 02

Current State Suspended

Sub Current State Filling

Weight Batch 180 Kg

Weight Acumulated 181 Kg

122Kg122Kg

Program Scale 03

Current State Suspended

Sub Current State Filling

Weight Batch 180 Kg

Weight Acumulated 187 Kg

11Kg

Program Scale 04

Current State Suspended

Sub Current State Filling

Weight Batch 180 Kg

Weight Acumulated 181 Kg

46Kg

START RESUME SUSPEND

Weight

START RESUME SUSPEND

Weight

START RESUME SUSPEND

Weight

START RESUME SUSPEND

Weight

Scale: Scale01 -> Filling.  Weight: 112.0. Weight Acumulated: 186.0
Scale: Scale02 -> Filling.  Weight: 44.0. Weight Acumulated: 181.0
Scale: Scale04 -> Dumping.  Weight: 81.0. Weight Acumulated: 181.0
Scale: Scale01 -> Filling.  Weight: 124.0. Weight Acumulated: 186.0
Scale: Scale03 -> Dumping.  Weight: 67.0. Weight Acumulated: 187.0
Scale: Scale02 -> Filling.  Weight: 58.0. Weight Acumulated: 181.0
Scale: Scale04 -> Dumping.  Weight: 61.0. Weight Acumulated: 181.0
Scale: Scale03 -> Dumping.  Weight: 47.0. Weight Acumulated: 187.0
Scale: Scale01 -> Filling.  Weight: 137.0. Weight Acumulated: 186.0
Scale: Scale02 -> Filling.  Weight: 72.0. Weight Acumulated: 181.0
Scale: Scale04 -> Dumping.  Weight: 41.0. Weight Acumulated: 181.0
Scale: Scale01 -> Filling.  Weight: 147.0. Weight Acumulated: 186.0
Scale: Scale03 -> Dumping.  Weight: 27.0. Weight Acumulated: 187.0
Scale: Scale02 -> Filling.  Weight: 83.0. Weight Acumulated: 181.0
Scale: Scale03 -> Dumping.  Weight: 7.0. Weight Acumulated: 187.0
Scale: Scale01 -> Filling.  Weight: 162.0. Weight Acumulated: 186.0
Scale: Scale04 -> Dumping.  Weight: 21.0. Weight Acumulated: 181.0
ns=2;i=2137
ns=2;i=2106
Python: New data change event ns=2;i=2088 Suspend
Scale: Scale02 -> Filling.  Weight: 98.0. Weight Acumulated: 181.0
Scale: Scale04 -> Dumping.  Weight: 1.0. Weight Acumulated: 181.0
ns=2;i=2260
ns=2;i=2258
ns=2;i=2266
ns=2;i=2256
Python: New data change event ns=2;i=2088 None
Scale: Scale02 -> Filling.  Weight: 111.0. Weight Acumulated: 181.0
ns=2;i=2331
ns=2;i=2329
ns=2;i=2337
ns=2;i=2327
Scale: Scale03 -> Filling.  Weight: -13.0. Weight Acumulated: 187.0
ns=2;i=2211
ns=2;i=2165
Python: New data change event ns=2;i=2103 Suspend
Scale: Scale04 -> Filling.  Weight: -19.0. Weight Acumulated: 181.0
Scale: Scale03 -> Filling.  Weight: 0.0. Weight Acumulated: 187.0
ns=2;i=2282
ns=2;i=2251
Python: New data change event ns=2;i=2240 Suspend
Python: New data change event ns=2;i=2103 None
Scale: Scale04 -> Filling.  Weight: -5.0. Weight Acumulated: 181.0
Python: New data change event ns=2;i=2240 None
Scale: Scale04 -> Filling.  Weight: 6.0. Weight Acumulated: 181.0
Scale: Scale04 -> Filling.  Weight: 19.0. Weight Acumulated: 181.0
Scale: Scale04 -> Filling.  Weight: 31.0. Weight Acumulated: 181.0
ns=2;i=2353
ns=2;i=2322
Python: New data change event ns=2;i=2311 Suspend
Python: New data change event ns=2;i=2311 None
In [1]:

Scale Programs, t=2 Server Log, t=2

Program Scale 01

Current State Suspended

Sub Current State Filling

Weight Batch 180 Kg

Weight Acumulated 569 Kg

31Kg

Program Scale 02

Current State Suspended

Sub Current State Filling

Weight Batch 180 Kg

Weight Acumulated 549 Kg

120Kg120Kg

Program Scale 03

Current State Suspended

Sub Current State Dumping

Weight Batch 180 Kg

Weight Acumulated 555 Kg

8Kg

Program Scale 04

Current State Suspended

Sub Current State Filling

Weight Batch 180 Kg

Weight Acumulated 558 Kg

139Kg139Kg

START RESUME SUSPEND

Weight

START RESUME SUSPEND

Weight

START RESUME SUSPEND

Weight

START RESUME SUSPEND

Weight

ns=2;i=2199
Python: New data change event ns=2;i=2103 Resume
Scale: Scale02 -> Filling.  Weight: -14.0. Weight Acumulated: 549.0
Scale: Scale04 -> Dumping.  Weight: 109.0. Weight Acumulated: 558.0
Scale: Scale03 -> Dumping.  Weight: 68.0. Weight Acumulated: 555.0
Python: New data change event ns=2;i=2103 None
Scale: Scale02 -> Filling.  Weight: -3.0. Weight Acumulated: 549.0
Scale: Scale04 -> Dumping.  Weight: 89.0. Weight Acumulated: 558.0
Scale: Scale03 -> Dumping.  Weight: 48.0. Weight Acumulated: 555.0
Scale: Scale02 -> Filling.  Weight: 9.0. Weight Acumulated: 549.0
Scale: Scale04 -> Dumping.  Weight: 69.0. Weight Acumulated: 558.0
Scale: Scale03 -> Dumping.  Weight: 28.0. Weight Acumulated: 555.0
ns=2;i=2282
ns=2;i=2251
Python: New data change event ns=2;i=2240 Suspend
Scale: Scale02 -> Filling.  Weight: 21.0. Weight Acumulated: 549.0
Scale: Scale04 -> Dumping.  Weight: 49.0. Weight Acumulated: 558.0
Python: New data change event ns=2;i=2240 None
Scale: Scale02 -> Filling.  Weight: 33.0. Weight Acumulated: 549.0
Scale: Scale04 -> Dumping.  Weight: 29.0. Weight Acumulated: 558.0
Scale: Scale02 -> Filling.  Weight: 46.0. Weight Acumulated: 549.0
Scale: Scale04 -> Dumping.  Weight: 9.0. Weight Acumulated: 558.0
Scale: Scale02 -> Filling.  Weight: 58.0. Weight Acumulated: 549.0
ns=2;i=2331
ns=2;i=2329
ns=2;i=2337
ns=2;i=2327
Scale: Scale02 -> Filling.  Weight: 70.0. Weight Acumulated: 549.0
Scale: Scale04 -> Filling.  Weight: -11.0. Weight Acumulated: 558.0
Scale: Scale02 -> Filling.  Weight: 81.0. Weight Acumulated: 549.0
Scale: Scale04 -> Filling.  Weight: 2.0. Weight Acumulated: 558.0
Scale: Scale02 -> Filling.  Weight: 94.0. Weight Acumulated: 549.0
Scale: Scale04 -> Filling.  Weight: 15.0. Weight Acumulated: 558.0
Scale: Scale02 -> Filling.  Weight: 108.0. Weight Acumulated: 549.0
Scale: Scale04 -> Filling.  Weight: 29.0. Weight Acumulated: 558.0
ns=2;i=2211
ns=2;i=2165
Python: New data change event ns=2;i=2103 Suspend
Scale: Scale04 -> Filling.  Weight: 44.0. Weight Acumulated: 558.0
Python: New data change event ns=2;i=2103 None
Scale: Scale04 -> Filling.  Weight: 57.0. Weight Acumulated: 558.0
Scale: Scale04 -> Filling.  Weight: 68.0. Weight Acumulated: 558.0
Scale: Scale04 -> Filling.  Weight: 78.0. Weight Acumulated: 558.0
Scale: Scale04 -> Filling.  Weight: 89.0. Weight Acumulated: 558.0
Scale: Scale04 -> Filling.  Weight: 101.0. Weight Acumulated: 558.0
Scale: Scale04 -> Filling.  Weight: 114.0. Weight Acumulated: 558.0
Scale: Scale04 -> Filling.  Weight: 128.0. Weight Acumulated: 558.0
ns=2;i=2353
ns=2;i=2322
Python: New data change event ns=2;i=2311 Suspend
Python: New data change event ns=2;i=2311 None
In [1]:

Figure 13. Visualization of execution of programs for each scale and server log in two instants of time.

Additionally, the importance of having standardized development processes is highlighted,
particularly within the context of Industry 4.0-driven smart factories.

In future work, an OPC UA server will be deployed in real industrial environments to
evaluate the potential reduction in costs and time-related to industrial systems development.
This endeavor seeks to validate the practical impact of the proposed methodology, providing
concrete insights into its ability to streamline industrial processes and improve operational
efficiency.
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