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Abstract
This manuscript presents a review of state-of-the-art techniques proposed in the literature for
multimodal image registration, addressing instances where images from different modalities
need to be precisely aligned in the same reference system. This scenario arises when the
images to be registered come fromdifferentmodalities, among the visible and thermal spectral
bands, 3D-RGB, or flash-no flash, or NIR-visible. The review spans different techniques from
classical approaches to more modern ones based on deep learning, aiming to highlight the
particularities required at each step in the registration pipeline when dealing with multimodal
images. It is noteworthy thatmedical images are excluded from this reviewdue to their specific
characteristics, including the use of both active and passive sensors or the non-rigid nature
of the body contained in the image.
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1 Introduction

The fields of image processing and computer vision are evolving towards scenarios where the
coexistence of information from different sources, each contributing to efficient task-solving,
is becoming more common. Some examples of such scenarios include video surveillance,
combining images from the visible domain with 3D data from LiDAR or thermal imaging
[1, 2]; the inspection of thermal insulation in buildings, utilizing visible and thermal images
[3, 4]; environmental monitoring, where visible and NIR images are widely used in remote
sensing applications [5]; image filtering and fusion, involving the combination of images
from different sources for noise filtering and enhancement [6, 7]; and crop inspection, such
as the detection of pests and diseases using images from various spectral bands acquired with
UAVs or remote sensing [8]. Furthermore, in driving assistance systems, multimodal imaging
is employed for pedestrian detection and scene understanding [9, 10]. These applications
have been enabled by advancements in hardware technology, including modern smartphones
equipped with multiple cameras that provide a rich source of information.

It should be highlighted that the success of the applications mentioned above is warranted
if the different sources of information are correctly placed in the same reference system—this
is referred to in the literature as an image registration problem. Image registration has been
largely studied over the last 3 decades and many solutions have been proposed in the liter-
ature, mainly for registering images from the same domain acquired with the same sensor.
In recent years, with the development of technology, the need to register images of a given
scenario, acquired with sensors of different nature, has transformed the registration problem
into a multimodal problem. The multimodal registration problem has mainly been studied
in the framework of medical images, which is neither mentioned in the list of applications
given above nor included in this survey. Medical image registration possesses unique char-
acteristics, such as the use of active and passive sensors, or the need to handle non-rigid
body structures. These specific challenges deserve separate attention and consideration in
dedicated research efforts. The current survey focuses on the non-medical multimodal image
registration problem, reviewing classical and novel deep learning-based approaches. Figure
1 illustrates some of the state-of-the-art applications reviewed.

Image registration is a process in which two or more images of the same scene, taken at
different times or from different points of view, are aligned in order to combine or compare
them. The process typically involves identifying matching features in the images and then
applying a transformation to align them. The problem turns challenging when images from
different modalities are considered, since features may look different due to the different
nature of the sources. Hence, the challenge is to describe features in images from different
modalities in a way that allows for unequivocal association. During last decades different
hand-made feature descriptors have been proposed in the literature (e.g., [17–20]) to tackle
the multimodal problem, most of them are adaptations of the well known EOH, SIFT, SURF,
etc. (e.g., [21–23]). In recent years, deep learning-based methods have been proposed for
multimodal image registration, which has shown promising results. These methods use Con-
volutional Neural Networks (CNNs) to learn image features (e.g., [24, 25]) used as a guidance
to align the image during the registration process. The advantage of using CNNs is that they
can learn to extract features from images even when the images are corrupted by noise or
artifacts, or they correspond to different modalities.

This manuscript reviews the state-of-the-art multimodal image registration techniques
proposed for the non-medical image domain. Firstly, a general image registration framework
is presented detailing each of the steps present in any multimodal image registration process.
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Fig. 1 Applications in the state of the art reviewed in the literature
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Fig. 2 Structure of this survey

Mathematical notation is introduced together with metrics used for the evaluation. Then,
classical approaches are reviewed, classifying the proposed solutions according with the
strategy used for the registration. Next, deep learning-based approaches proposed in the
literature to tackle the multimodal registration problem are detailed. The main elements of
deep learning approaches, such as dataset handling, network architectures, loss function and
training process are reviewed. The manuscript ends with general conclusions summarizing
the open problems and main challenges that still remain in multimodal image registration.
Figure 2 shows the general structure of this work.

2 Image registration framework

This section starts by describing the mathematical notation used throughout the manuscript.
Then, we review the most common image pre-processing approaches, focusing on enhancing
both source and target images to improve the registration results. Next, transformation mod-
els usually applied in the registration of multimodal images are detailed. Then, registration
measures proposed in the literature for the multimodal case are presented. Finally, optimiza-
tion techniques generally used in this framework are just mentioned, since no particular
requirement is needed for the multimodal case.

2.1 Mathematical notations

Table 1 show the mathematical notations used in the present work.

2.2 Preprocessing

An initial step in multimodal image registration involves preprocessing the source and target
images. It includes a set of operations that are performed on the images to improve the
registration results. The goal of preprocessing is to make the source and target images more
similar and to reduce the variability between them, which can make the registration process
more robust and accurate. It is worth mentioning that this step is optional and may or may
not be present. There are a large number of techniques used in the preprocessing task of
multimodal image registration, a couple of which are presented in this section together with
some examples.
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Table 1 Mathematical notations used in this paper

Symbol Description

X fixed image, also referred to as target or reference image

Y moving image, also referred to as source image

p(x, y) joint probability distribution of the intensities in images X and Y

p(x) marginal probability distributions of the intensities in image X

p(y) marginal probability distributions of the intensities in image Y

M I (X , Y ) mutual information between images X and Y

H(X) entropy of image X

H(Y ) entropy of image Y

x(i, j) intensity values at a point (i, j) in image X

y(i, j) intensity values at a point (i, j) in image Y

mean(X) mean intensity values of image X

mean(Y ) mean intensity values of image Y

std(X) standard deviation of the intensity values of image X

std(Y ) standard deviation of the intensity values of image Y

N total number of sample points in images X and Y

|X ∩ Y | area of overlap between images X and Y

|X | number of pixels on image X

|Y | number of pixels on image Y

One of the techniques used in preprocessing is intensity normalization, which involves
normalizing the intensity values of the images to a common range, which can improve the
registration results. This step can be performed using techniques such as histogrammatching
or intensity standardization. For instance, Okorie et al. [26] employ an intensity mapping
technique that aims to transform the histogram of an image to match that of a reference
image. This aims to produce a similar distribution of intensities in the image pair to be
registered, and the method is specifically tailored for registering satellite images captured in
different spectral bands.

The image denoising could be also considered as a preprocessing technique, it involves
removing noise from the images for improving the registration results. This step can be
performed using techniques such asmedian filtering, Gaussian filtering, orwavelet denoising.
In Jiang et al. [27] the authors use Gaussian filtering to obtain the true pixel intensity and
delete outliers progressively in order to improve the matching results. Registration of images
from different spectral bands is considered. Image enhancement has been considered as
another preprocessing technique. It is intended to enhance the given images in order to
make the features more distinct for a better registration result. This step can be performed
using techniques such as contrast stretching, histogram equalization, or unsharp masking.
For example, Teke et al. [28] propose to use contrast stretching and histogram equalization to
improve the correct match rate of the SURF method. According to the authors, better results
are obtained with histogram equalization.

Contrary to all previous approaches, which are based on classical image preprocessing
techniques, deep learning-based image-to-image translation has recently been used to trans-
form the multimodal registration problem into a monomodal one, which is easier to solve. In
[29], an empirical evaluation study for rigid registration of 2D and 3D images is performed.

123



63924 Multimedia Tools and Applications (2024) 83:63919–63947

The effectiveness of this strategy is evaluated by performing a GAN-based image-to-image
translationmethod (e.g., pix2pix [30], CycleGAN [31], DRIT++ [32], or StarGANv2 [33]) or
one contrastive representation learning model (CoMIR) [34] before the monomodal registra-
tion process. The results demonstrate that the use of the image-to-image translation method
to preprocess the images mapping them in the same domain can be effectively performed
prior to the monomodal registration technique in scenarios such as remote sensing; since in
this kind of problem, the images will have high similarity in structure and appearance.

2.3 Transformation

Within the image registration process, the model transformation refers to the way the source
(moving) image Y is aligned towards the target (reference) image X , different transforma-
tion models can be applied. The transformation model can be 2D, 3D, or other dimensions,
depending on the dimensionality of the images. These models determine how the source
image should be deformed for optimal alignment. From an optimization perspective, a trans-
formation model defines the parameter space in which the optimal parameters are iteratively
or simultaneously determined. The primary types of transformation models include rigid,
affine, and non-rigid deformation. A rigid model allows only basic rotation and translation
of the source image, while a non-rigid model offers more flexibility by allowing the source
image to undergo complex deformations with higher degrees of freedom. In this section, we
will explore and discuss the commonly used transformation models in multimodal image
registration.

The first transformation model reviewed in this section is the rigid registration; this rep-
resentation defines a rigid transformation, which includes translation and rotation, to align the
images. This method is fast and simple, but it can be sensitive to changes in viewpoint, scale,
and rotation. This simple transformation model is widely used in remote sensing applica-
tions, where images from different spectral bands are registered in the same reference system
for further analysis (e.g., crop inspection ([35, 36]); furthermore, this transformation can be
used in chemical imaging [37], face detection [38], or other applications ([39–41]), etc.). For
instance, the work presented by [42] adopts a rigid transformationmodel in the registration of
multimodal remote sensing images, and the authors use translations and rotation transforma-
tions to perform the alignment of images. Deng et al. [43] propose InMIR-Net, a network that
can be used for both rigid and non-rigid multimodal image registration. For rigid registration,
a homographymatrix between the fixed andmoving images is used in order to describe linear
transformations such as scale, translation, rotation, and perspective. In addition, other deep
learning-based approaches make use of a homography matrix for transformation [44–46].

Regarding the affine registration, it applies an affine transformation model that includes
translation, rotation, scaling, and shearing, to align the images. This representation is more
flexible than rigid registration, but it can still be sensitive to changes in viewpoint, scale,
and rotation. In general, an affine transformation is composed of linear transformations (i.e.,
rotation, scaling, or shear) and a translation (or shift). Geometric contraction, expansion,
dilation, reflection, rotation, shear, similarity, and translation are all affine transformations,
as are their combinations. The authors in [47] propose a novel affine transformationmodel for
registering cross-spectral images from satellites based on a robust transformation parameter
estimation algorithm called the histogram of TAR sample consensus. In the same way, the
authors in [48] present a novel affine and contrast invariant descriptor for infrared and visible
image registration, in conjunction with using structural features extracted based on phase
congruency. Additionally, Tu et al. [49] use spatial affine transformation in order to capture
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the spatial correlation between two modalities. To this end, a Spatial Transformer Network
(STN) is used in [50], the authors predict a deformation field between the images by using
a Multi-level Refinement Registration Network. In [51], the authors propose the use of a
projective transformation between the corresponding points on the corners of the image.

Finally, the non-rigid registration, which is also referred to as deformable registration,
estimates the parameters of a non-rigid transformation. This transformation corresponds to
a deformation field that aligns the source with the target image. Non-rigid deformations are
more flexible than rigid or affine transformations and can handle large geometric variations
and changes in viewpoint, scale, and rotation. For example, Ma et al. [52] propose a reg-
ularized Gaussian fields criterion for image registration between visible and infrared face
images. The main idea is to represent the images using the edge maps and align them by a
robust criterion with a non-rigid model. Non-rigid transformation is also used by Rabatel et
al. [53]. The authors use the Fourier-Mellin transform to register visible and near-infrared
unmanned aerial vehicle images. On the other hand, some learning-based approaches are
using non-rigid transformation. For instance, Arar et al. [54] propose the use of non-rigid
spatial transformation by applying a non-linear dense deformation between the multimodal
images. Thin-Plate Spline (TPS) and Free-Form Deformation (FFD) are among other types
of non-rigid transformations [55].

2.4 Registrationmeasures

As mentioned above, the objective of registration techniques is to find the optimal transfor-
mation that aligns the source imagewith the target image. Therefore, it is crucial to define and
understand the criteria by which we evaluate the alignment quality, known as the registration
error. The choice of registration measure greatly influences the outcome of the registration
process. These measures play a vital role not only in assessing the quality of the final align-
ment but also throughout the optimization phase, where the best transformation parameters
are being sought.

One of the most widely used measures for evaluating multimodal image registration is the
mutual information (MI). The basic idea behindMI is tomeasure the amount of information
that is shared between the two images being registered. The main benefit of this measure is
that it is invariant to monotonic transformations of the image intensities, this means that it
does not depend on the specific intensity values, but rather on the relationship between them.
This fact is important since the content of the images may look quite different since we are
tackling images from different modalities. The mutual information between the target and
source images (X and Y ) is defined as:

MI (X , Y ) =
∑

x
∑

y · p(x, y) · log
(

p(x, y)

p(x)p(y)

)
(1)

TheMI value ranges between 0 and the highest possible value, which is the entropy of one of
the images. A highmutual information value indicates a high degree of similarity between the
images, while a low value indicates a low degree of similarity.Mutual information is sensitive
to noise and intensity variations, which can lead to a high mutual information value even if
the images are not well aligned. This is done by comparing the joint probability distribution
of the intensities in the two images to the product of the marginal probability distributions
of the intensities in each image. The algorithm proposed by [56], which has been tested on
optical, LiDAR, SAR, and depth maps shows good performance against complex non-linear
radiometric differences and improves the state-of-the-art values of mutual information.
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A variant of the MI measure is normalized mutual information (NMI). The main idea
is similar to MI, which is to measure the amount of information that is shared between
the two images being registered. However, NMI addresses one of the limitations of MI by
normalizing the mutual information value to compensate for changes in image intensity. It
corrects for the effect of changes in image intensity, which can occur due to variations in
imaging conditions or scanner settings. By normalizing the mutual information value, NMI
can provide a more robust evaluation of the registration results. Also, NMI is invariant to
monotonic transformations of the image intensities, similar to mutual information. However,
like mutual information, it can be sensitive to noise and intensity variations, which can lead
to a high NMI value even if the images are not well aligned. A drawback of both, MI and
NMI, is that they do not take into account the spatial relationship between pixels, so it can
be less suitable for images with large geometric variations [57]. The NMI between images
X and Y is defined as:

NMI (X , Y ) = 2 · MI (X , Y )

H(X) + H(Y )
(2)

The NMI value ranges between 0 and 1; a value of 1 indicates perfect alignment between the
images, while a value of 0 indicates that the images are completely independent. The authors
in [58] propose a filter method of feature selection based on normalized mutual information.
The average normalized mutual information is proposed as a measure of redundancy among
features, in order to reduce the bias of MI toward multivalued attributes and restrict its value
to the interval [0, 1].

Due to the different nature and appearance of the images to be registered, classical
difference-based measures (e.g., Cross-Correlation (CC), Mean Square Error (MSE), etc.)
are rarely used in multimodal image registration. A few works on a family of these difference
based approaches can be found in the registration of hyperspectral or multispectral images.
In these particular cases, these measures can be used since the images to be registered are
similar due to the short distance between the acquired spectral bands. For instance, in [59]
the authors implement a method to recover subpixel rotation and translation accuracy from
an airborne hyperspectral imaging system using a portable hyperspectral tunable imaging
system. In this case, images are registered using theNormalized Cross-Correlation (NCC).
The normalized cross-correlation between images X and Y is defined as:

NCC(X , Y ) =
∑ (x(i, j) − mean(X)) · (y(i, j) − mean(Y ))

std(X) · std(Y )
(3)

The NCC ranges between -1 and 1. A value of 1 indicates perfect alignment between the
images, while a value of -1 indicates miss-alignment and a value of 0 indicates no correlation
[60]. The main characteristic of the NCC over cross-correlation is that NCC is less sensitive
to linear changes in the amplitude of illumination in the two compared images. Also, it
is sensitive to both small and large intensity variations, providing a detailed analysis of
the intensity variations between the images, particularly in the case of normalized cross-
correlationwhere it takes into account themean and standard deviation of the images.Another
benefit of using NCC is that it is relatively simple to compute [56, 61].

The Root Mean Square Error (RMSE) is another measure that may be used for evalu-
ating the registration results in the particular cases of multispectral or hyperspectral image
registration, as mentioned above, since in general images to be registered look similar. To
assess the registration results, RMSE is used in the overlapped area between the target image
and the transformed source image. The idea is tomeasure the difference between the intensity
values of the two images at each point, and then take the square root of the average of the
squared differences. TheRMSEvalue ranges between 0 and infinity, where 0 indicates perfect
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alignment between the images, and the greater the RMSE value, the greater the dissimilarity
between the images. It is important to note that the RMSE value is unit dependent, it is usually
applied to normalized images [48, 62, 63]. For instance, in [35] the authors propose a novel
remote sensing image registration method based on phase congruency and spatial constraint,
to register SAR images. To evaluate the proposal, different pairs of multi-spectral satellite
images are used. The RMSE between images X and Y is defined as:

RMSE(X , Y ) =
√

1

N
·
∑

(x(i, j) − y(i, j))2 (4)

The correlation coefficient (CCO) is also used as ameasure to evaluate the particular case
of multispectral and hyperspectral registration results. The basic idea behind the correlation
coefficient is to measure the linear relationship between the intensity values of two images
at each point. The values of CCO range between -1 and 1. A value of 1 indicates perfect
alignment between the images, while a value of -1 indicates miss-alignment and a value of
0 indicates no correlation (e.g., [64, 65]). In [66] the authors propose an integrated approach
for the registration and fusion of hyperspectral and multispectral images. The correlation
coefficient (CCO) between images X and Y is defined as:

CCO(X , Y ) =
∑

(x(i, j) − mean(X)) · (y(i, j) − mean(Y ))

std(X) · std(Y )
(5)

The last measure reviewed in this work is the Dice similarity coefficient (DSC); it is
used for evaluating the registration results in segmentation-based registration methods. The
intuition behindDSC is tomeasure the similarity between two segmented images (e.g., binary
masks or categorical data). The DSC value ranges between 0 and 1. A value of 1 indicates
perfect overlap between the sets, while a value of 0 indicates that the sets have no elements
in common (for more details see [67, 68]). The main characteristic of this measure is that it
is specifically designed for comparing binary or categorical data, such as segmented images.
It takes into account both the number of true positive and true negative pixels and provides a
measure of the similarity between the segmented regions. The DSC is relatively insensitive
to the size of the regions being compared, which can be useful in cases where the regions
have different sizes or shapes. It is important to note that the images may be acquired by
different sensors from various perspectives. One of the main drawbacks of DSC is that it
assumes that the binary or categorical data being compared are perfect, which is often not
the case in practice [69, 70]. The DSC is defined as:

DSC = 2 · |X ∩ Y |
|X | + |Y | (6)

2.5 Optimisation

After detecting the features and establishing correspondences, the transformation function is
applied to the source image. During the optimization step, we seek the optimal transformation
parameters, aiming tominimize the registrationmeasure. In general, this process is iteratively
applied until a satisfactory alignment is achieved. Various optimization methods can be
applied (e.g., simulated annealing, particle swarm optimization, gradient descent, Levenberg-
Marquardt algorithm, genetic algorithm, to name a few); however, their use is exactly the
same as in classical image registration, where both, source and target, belong to the same
domain. There is not a specific particularity related to the multimodal problem that requires
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some adaptation, hence we refer to review optimization approaches used in classical image
registration problems in case the reader is interested in it.

It’s important to note that the registration process can be sensitive to initial conditions, and
running the process with different initial conditions can enhance the likelihood of finding an
optimal solution. The number of iterations needed depends on the specific characteristics of
the images, the application requirements, and the available computational resources. Some
registration methods such as Elastix [71], Imregister [72] and Advanced Normalization Tools
(ANTs) [73], are iterative by nature, the registration is based on the displacement field, and
the algorithm estimates this field iteratively.

It is important to monitor the registration process during iteration, checking for conver-
gence and ensuring that the registration results are not overfitting. Overfitting occurswhen the
registration process becomes too sensitive to noise and outliers, resulting in poor registration
outcomes. One way to detect overfitting is by monitoring the change in registration met-
ric values between iterations. Additionally, implementing early stopping criteria is crucial.
This allows for terminating the registration process when the registration metric values reach
a satisfactory level or when the registration results remain unchanged between iterations.
This helps prevent the algorithm from running unnecessary iterations, saving computational
resources.

3 Classical image registration

This section summarizes the state-of-the-art of classical approaches proposed in the literature
to register multimodal images. The reviewed techniques are grouped into four categories
depending on the way that points from source and target are selected and matched: manual
registration, feature-based, intensity-based, and area-based methods. The following provides
a summary of these categories along with descriptions of the techniques employed in each.
It is worth mentioning that each approach has its strengths and weaknesses, and the choice
of approach depends on the specific application and the characteristics of the images being
registered.

3.1 Manual registration

Despite the advances in the image processing field,multimodal image registration is still often
performed manually by experts in some particular applications (e.g., registration of images
in cartography). This manual process consists of selecting control points, also referred to
as landmarks, that will be used to establish correspondences between the images. The main
idea is to manually or semi-automatically identify these points in both images and then use
these points to align the images. The landmarks can be points, curves, or surfaces, depending
on the nature of the structures being aligned [74, 75]. Manual registration can handle images
with significant appearance differences, which may happen due to the geometric variations
or the different nature of source and target images. These approaches are robust to changes in
intensity, noise, and occlusions. Additionally, it can be usefulwhen the region of interest is not
well defined and the background is informative. The manual annotation requires significant
expertise, time, and effort. It can also be subject to variability and errors due to individual
differences between annotators. However, it can be a useful approach when the structures
of interest are complex or subtle, and automated methods may not be accurate or reliable.
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Manual annotation can provide a ground truth for evaluating the accuracy of automated
registration methods.

Semi-automatic landmark registration refers to the process of selecting landmarks man-
ually on one image and then automatically detecting corresponding landmarks in the other
image to establish point correspondences. In this approach, the landmarks are manually
identified by an expert, but their correspondence is determined automatically by a computer
algorithm. This technique can be used in situations where the object of interest has easily
identifiable landmarks that can be consistently located by the expert observer. Semi-automatic
landmark registration methods can be quicker and more consistent than manual methods, yet
retaining the accuracy of manually identified landmarks. The performance of these methods
can be affected by the quality of the initial manual annotations, as well as the ability of the
automated algorithm to correctly detect corresponding landmarks. For instance, Habib et
al. [76] present a comprehensive investigation and implementation of the involved issues in
a semi-automatic registration procedure capable of handling multi-source satellite imagery
with varying geometric resolutions.

3.2 Feature based registration

As an enhancement of the previous section, various approaches have been proposed to auto-
matically detect features in source and target images that are subsequently matched. To
review the state-of-the-art approaches, this section is divided into two main subsections: 1.
Describing feature points from different modalities (Section 3.2.1); and 2. Matching these
feature points (Section 3.2.2).

3.2.1 Feature extraction

The term "feature" may refer to edges [77], corners [78], or blobs [79], which are employed
to establish correspondences between pixels in the given source and target images. The
fundamental idea behind such a representation is to extract a set of distinctive features from
the images, and then use these features for image alignment. One advantage of feature-based
registration is its ability to handle imageswith significant geometric variations and to be robust
to changes in intensity, noise, and occlusions. Additionally, it can be useful when the region
of interest is not well defined and the background is informative. Another benefit is its relative
simplicity of computation,making itwidely used in image processing. The literature proposes
various handcrafted feature descriptors to achieve a similar representation of feature points in
source and target images. Given that source and target images correspond to information from
different modalities, this task is challenging. Furthermore, these descriptors should exhibit
sensitivity to geometric variations [57, 80].

The description of points from different modalities cannot always be addressed with
classical approaches (e.g., SIFT [81], SURF [23], RIFT [82], etc.) due to the non-linear
intensity variations that may exist between images from the source and target. Hence, differ-
ent strategies have been employed to achieve a comparable description, irrespective of the
image modality. One notable contribution is presented in [83], where the authors propose a
novel registration method, referred to as Uniform Robust SIFT (UR-SIFT), designed for var-
ious optical multi-source remote sensing images. The research addresses specific challenges
in matching features in remote sensing images, considering scale variability and lighting
conditions. Other early approaches focused on a straightforward strategy, which involves
modifying gradient-based descriptors to operate within [0, π] instead of [0, 2π]. This simple
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modification helps to reduce the effect of changes in gradient direction between images from
different modalities. It has been employed to adapt SIFT and HOG descriptors for match-
ing visible and NIR images (e.g., [19, 20]). Although the strategy is simple, it significantly
improves the performance of these algorithms in multimodal scenarios.

For the specific case of NIR and visible spectrum images, several approaches are based
on the observations of [84], where a study of joint statistics between visible and thermal
images is conducted. In this study, the authors identified a strong correlation between the
boundaries of objects in both spectra. In other words, while texture information is lost,
edge information remains similar between images from different spectral bands. Building
on this discovery, [18] proposes a local Edge Histogram Descriptor (EHD) that utilizes edge
information instead of image texture. Similarly, to address the LWIR and visible spectrum
domain, the authors in [85, 86] suggest using EHD over image patches obtained by different
Log-Gabor filters. More recently, Radhika et al. [87] extract point features from a pyramid of
wavelet images, followed by a coarse-to-fine matching method based on a new aspect-based
similarity measure. On the other hand, for RGB-D point cloud registration, Wan et al. [88]
employ an enhanced ICP algorithm with infrared and color cameras.

Similar to the SIFT case, some authors propose modifications to the SURF descriptor to
address the multimodal problem. For example, [89] proposes a method referred to as MM-
SURF (Multimodal-SURF) that allows multimodality registration to be performed with high
speed and accuracy for real-time applications. Taking the SURF algorithm as a starting point,
Jhan et al. [90] propose to normalize this technique by naming it N-SURF, which can increase
the number of correct matches between the pairs of images obtained from a multispectral
camera and achieve one-step registration. The last method present by [82] is Radiation Vari-
ation Insensitive Feature Transform (RIFT). This method is a radiation insensitive image
registration method based on phase congruency and a maximum index image. This method
realizes the insensitivity and rotation invariance to multimodal image radiation changes. For
instance, to address the problemof visible and thermal image registration-significant channels
for remote sensing applications as mentioned in [91–94]-the authors in [95] use homomor-
phic filtering to enhance thermal images. They also employ a modified RIFT algorithm that
utilizes a binary pattern string for descriptor construction.

3.2.2 Feature matching

Once feature points from both multimodal images are detected and described, the next step
is to find correspondences between them that will be used to align the images and estimate
registration parameters. In other words, once the features are described, the problem becomes
similar to the feature matching in the monomodal case, since there is no particular consider-
ation to be taken into account. The nearest key point is found by calculating the Euclidean
distance between the corresponding descriptor vectors. Like in monomodal cases, match-
ing robustness can be increased by using constraints such as the ratio between the first and
second best matches should be higher than a given threshold [18]. Vijay et al. [96] propose
an image registration system based on a local image feature descriptor matching algorithm.
The algorithm is based on a Nearest Neighbour search, performed more efficiently using an
acceptance threshold. The proposed feature-matching algorithm simultaneously matches n
descriptors based on their total distance. This enabled a fast feature-based image registration.
In addition, Yuan et al. [97] apply the NCC algorithm to achieve a one-to-one match between
the UAV image feature points and the matching points on the corresponding Google satellite
map. On the other hand, Song et al. [98] present a method to model and remove RGB-D cam-
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era deviations using a specially designed checkerboard with hollow squares used to measure
the deviations and camera parameters.

Due to the appearance difference on the image to be registered, a large number of wrong
associations may appear during the feature matching, hence some filter to remove wrong
matches is required like the well-known Random Sample Consensus (RANSAC) [99] algo-
rithm largely used in computer vision. This method helps to estimate the parameters of a
mathematical model from a set of observed data, which contains outliers. It randomly selects
a minimal subset of feature correspondences and then estimates the parameters of the model
using this subset. Subsequently, it evaluates the remaining correspondences to determine
those that are inliers to the model. This method is robust to noise and outliers, but it can
be sensitive to changes in viewpoint, scale, and rotation. For example, Cheng et al. [100]
propose a new technical framework for remote sensing image matching by integrating affine
invariant feature extraction and RANSAC. It is proposed to determine the distance threshold
of RANSAC, which is a main problem in implementing this RANSAC-based automatic opti-
mization. Finally, we should mention that optimal correspondences between feature points
can be established through solving an assignment problem, using Hungarian algorithm, for
instance [101].

3.3 Intensity based registration

The intensity values can be also used in somemultimodal image registration approaches. This
technique can be used when the images look similar, hence intensity values of the images
may be used to establish correspondences between the images. The idea of this technique
is to use the intensity values of the images to measure the similarity between the images at
each point, and then use this similarity measure to align the images. This approach allows
for a detailed analysis of intensity variations between the images. It is relatively simple to
compute and finds wide applications in image processing. However, the main limitation is
that it does not take into account the spatial relationship between the pixels, so it can be less
suitable for images with large geometric variations. Additionally, it is sensitive to noise, so a
high similarity measure can indicate not only a good registration but also a high noise level
in the images.

Due to the limitations of the intensity-based approach, it is not possible to perform a cor-
rect alignment between visible-thermal images or RGB-depth images, since they present a
large difference in intensity levels. Due to the aforementioned, Krishnan et al. [38] present an
enhanced intensity-based image registration technique for thermal and visible facial images
through a histogram matching scheme. Also, the result presented by the authors shows an
improved registration quality when quantified using structural similarity and mutual infor-
mation metrics. In a later study, Krishnan et al. [102] present an intensity-based image
registration approach using visible and thermal face images. The proposed approach applies
a saliency map strategy to balance the thermal and visible images intensity levels in order to
overcome intensity differences and ensure proper multimodal image registration. This work
presents good results using structural similarity index measure and universal image quality
index metrics. In contrast, Chen et al. [103] propose an intensity-based multispectral image
registration approach called normalized total gradient. In addition, Hu et al. [104] use an
enhanced artificial bee colony algorithm with a leading group and MI metric to register mul-
timodal images. The main idea of this measure is based on the assumption that the gradient of
the difference between two aligned band images is sparser than that between two misaligned
ones. The proposed approach consists of an image pyramid and global/local optimization;
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it is introduced for affine transformation. The results show that this method is useful for
unimodal and multimodal images.

Discussion

Classical approaches provide a viable solution for multimodal image registration when the
source and target images are similar. However, in cases with significant appearance differ-
ences between images to be registered (e.g., visible spectrum and thermal; 3D and RGB),
adaptations to the algorithms may be necessary to address this specific challenge. It is impor-
tant to note that the pipeline presented in this manuscript can be modified depending on the
characteristics of the images and the aim of the registration. Some steps could be skipped,
or be combined, or even replaced by other methods. Additionally, the selection of each step
will depend on the specific characteristics of the images, the requirements of the application,
and the computational resources available. Table 2 summarizes the most recent classical
approaches proposed in the literature for multimodal image registration.

4 Deep Learning based image registration

Classical image registration approaches are limited by their computational efficiency and the
way these methods define the similarity measure metrics for the optimization process during
the registration. To overcome the challenges of classical approaches, deep learning-based
techniques are commonly used. These techniques measure similarity or estimate geometrical
transformations. Depending on the training strategies, deep learning approaches are classified
into supervised and unsupervised techniques, as demonstrated in studies such as [50, 54, 113].

There exist several deep learning-based architectures used for multimodal image regis-
tration; they typically involve Convolutional Neural Networks (CNNs), including ResNet,
U-Net, and Fully Convolutional Networks (FCNs). Recently, transformers [44] and Gener-
ative Adversarial Networks (GANs) [46, 54] are also used during the registration process,
as detailed in the next section. Most approaches use non-rigid or affine transformations
(e.g., [44, 49, 114], [50, 54], to name a few). These deep learning-based techniques have
demonstrated remarkable performance, significantly improving the accuracy and robustness
of multimodal image registration. The manuscript delves into architectural innovations and
training strategies that contribute to the success of these deep learning approaches.

4.1 Deep learning-based registration: categories

Deep learning-based multimodal image registration methods are commonly categorized into
two groups: integrated learning methods [45, 51] and end-to-end learning methods [115].
Integrated learning methods involve incorporating a deep learning model into the classical
multimodal image registration pipeline. These methods typically employ deep learning to
estimate the similarity measurement between the source and target images, guiding the iter-
ative optimization process. These techniques are also known as deep iterative methods.
In contrast, end-to-end learning methods focus on directly estimating the transformation
parameters and are referred to as deep transformation estimation methods [116]. Since
end-to-end learning methods leverage deep learning techniques for the entire image registra-
tion process, various techniques have been proposed within this category.
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Fig. 3 Categories of end-to-end deep learning-based approaches

This paper provides a summary of state-of-the-art end-to-end deep learning approaches
for multimodal image registration. These approaches are classified into two categories based
on how multimodal images are translated for registration: mono-domain registration and
cross-domain registration. The workflow of these categories is illustrated in Fig. 3.

4.1.1 Mono-domain registration

In this category, image translation is performed before estimating transformation parameters
for registration. The registration process is executed using images represented in a mono-
domain or mono-modality, involving feature extraction. These approaches utilize image-
to-image translation techniques to convert multimodal image registration into monomodal
image registration.

Arar et al. [54] propose amultimodal registrationmethod that utilizes a spatial transforma-
tion network based on a fully convolutional network and a re-sampler layer for registration,
a translation network to preserve geometric properties, and a discriminator based on a con-
ditional GAN. The generator is used to produce a deformation field given two images. This
method aims to learn a non-rigid spatial transformation for registration. In the registration net-
work, the deformation field generator produces a matrix indicating the deformation direction
for each pixel, representing the spatial transformation. These methods perform an image-
to-image translation, where one of multimodal images is transformed into another modality.
Pielawski et al. [34] propose a Contrastive Multimodal Image Representation (CoMIR) for
registration, which allows for mono-domain registration since this method generates similar
representations given two images of different modalities. CoMIR employs two U-Nets, each
dedicated to one modality without weight sharing, along with a contrastive loss, InfoNCE.

"In addition, Wang et al. [50] present the Multi-Level Refinement Registration Network
(MMRN) for the registration of infrared and visible images. Firstly, the visible image is trans-
lated to a pseudo-infrared image by the proposed Cross-Modality Perceptual Style Transfer
Network (CPSTN); CPSTN is based on CycleGAN [31] but includes a perceptual style trans-
fer constraint and cross regularizations across two-cycle learning paths. Then, the registration
is performed in amono-modality fashionbyMMRN,predicting the deformationfield between
the infrared images and reconstructing the registered infrared image. Also in a mono-domain
style, Xu et al. [113] propose a registration and fusion framework where the registration
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module is performed through networks referred to as TransNet and AffineNet. TransNet per-
forms a translation process to transfer the multimodal images into the same domain. Then,
AffineNet generates the affine parameters, which are constrained by the similarity. Finally,
Elsaeidy et al. [46] propose a keypoint-based Infrared-to-Optical image registration. In this
approach, the infrared image is translated into an optical image, while keypoint extraction
and matching are performed within a single domain.

4.1.2 Cross-domain registration

These approaches aim to extract features from each modality in order to register the multi-
modal images. Zhang et al. [51] propose a siamese fully convolutional network. Each branch
is used for one modality and consists of seven convolutional layers. Tang et al. [115] pro-
pose a multiscale strategy to define a coarse-to-fine registration. In particular, three networks
are cascaded on different scales. The first network uses Spatial Transformer Network which
performs the initial registration. Then, the second network is used to generate a residual regis-
tration. The third network performs a deeper registration. To extract the semantic information
and the geometric transformation parameters, the networks use Deep Residual ConvBlocks,
a Squeeze Excitation, and Deep Residual ConvBlock with a channel attention mechanism.
Besides, in [115] a structural similarity-based loss function is proposed to allow the reg-
istration of several multimodal images. Additionally, Tu et al. [49] propose a method that
includes modality alignment for RGBT Salient Object Detection. The modality alignment
module embeds a spatial transformer network.

In their work, Chen et al. [44] introduce a network known as Shape-Former, incorporating
a robust soft estimation of outliers to filter outliers before extracting shape features. Addi-
tionally, they propose ShapeConv to integrate CNN with Transformer. A coarse registration
layer is at the front end of Shape-Former for generating a homography matrix. Additionally,
Quan et al. [117] propose a CNN multimodal feature learning and matching model, which is
optimized by self-distillation learning, matching learning, and reconstruction learning. This
model based on a partially unshared network allows extracting features from each modality
in different branches. Then, a shared feature mapping model is used to map the features into
a shared space before being matched. The self-distillation learning is used to extract richer
similarity informationwhile reconstruction learning helps to separate matching features from
nonmatching features. Debaque et al. [114] propose a method for the registration of ther-
mal and visible images using homography estimation to correct parallax from two images.
This method is based on ResNet34 architecture, which consists of three modules: a feature
extractor, a mask predictor, and a mapping computation.

Discussion

Deep iterative methods can be slow in highly dimensional space since the transformation
estimation is iterative. Hence, end-to-end approaches can be used in a high-dimensional
space. Furthermore, it is important to mention that the loss function plays a vital role in the
deep learning process. Hence, several studies have proposed novel loss functions to improve
registration keeping the structural similarity. Besides, a registration process may consist of
multiple network architectures, where several loss functions can be used such as structural
similarity, triplet loss, reconstruction loss, and L1-reconstruction loss, to name a few— loss
functions are detailed in Sec. 4.2.3.
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4.2 Deep learning-based registration: pipeline

Deep learning approaches can exhibit variations in their pipelines due to factors such as
network architecture, choice of loss functions, data handling, and the training process. This
section summarizes these factors of deep learning-based approaches for multimodal image
registration. It is crucial to keep in mind that deep learning techniques are used to perform
the steps of the classical multimodal image registration based on the learning process for
feature extraction, matching, transformation estimation, and reconstruction.

4.2.1 Dataset handling

Data augmentation is a technique used to increase the size of the training dataset by applying
random transformations to the images, such as rotation, scaling, shearing, and flipping. Given
the limited availability of aligned data in multiple modalities, data augmentation can be
employed to generate a larger dataset. Geometric transformations are typically used for data
augmentation. For instance, Parbs et al. [118] use random flipping, rotation, and cropping
as data augmentation techniques. Also, Gaussian noise is used for slightly deforming the
input images. Tang et al. in [115] use data augmentation for training the registration network.
The dataset is augmented through random affine transformations applied to aligned images
to obtain four corner displacements. Additionally, Lu et al. [29] use random horizontal flip,
rotation, random Gaussian blur, and crop.

Deep learning-based techniques, particularly Generative Adversarial Network (GAN), are
also used for data augmentation. For instance, Quan et al. [119] propose the use of a GAN
in order to generate additional data for optical and SAR image registration. The generator of
the proposed GAN is optimized for the distribution, pixel, and reconstruction aspects of the
images using adversarial, mapping, and reconstruction losses.

4.2.2 Network architectures

Network architecture refers to the structure of the neural networkmodel, determining how the
data flows through the network and how it is processed and transformed during the learning
process. Thesemethods can be supervised [44] or unsupervised (e.g., [50, 54, 113, 115]). The
network architectures typically used for multimodal image registration are based on CNN,
however, some approaches use other architectures such as transformers, and GANs. Figure 4
shows the general schemes for multimodal image registration based on the aforementioned
deep learning architectures. These approaches are detailed as follows.

CNNarchitecture is composed of several blocks such as convolution layers, pooling layers,
and fully connected layers. Quan et al. [117] present a partially unshared feature extraction
network for optical-SAR images based on a Siamese network. This network consists of
two low-level feature extraction networks one for each modality since there are notable
differences in appearance between optical and SAR features. Themultimodal feature learning
model comprises two convolutional layers, followed by a batch normalization step. After
feature extraction, the common features are mapped in a shared approach. The shared feature
learning model includes five convolutional layers. On the other hand, Zhang et al. [51]
propose a siamese fully convolutional network. This network contains seven convolutional
layers, along with the ReLU activation layer and batch normalization layer.

In [115], the registration method extracts semantic information and generates geometric
transformation parameters by utilizing a channel attentionmechanism and a residual network
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Fig. 4 Overview of architectures used for multimodal image registration

in a multiscale coarse-to-fine strategy. A residual network contains building blocks called
residual blocks, which consist of two or more convolutional layers with batch normalization
and non-linear activation functions with a skip connection. In [45] the authors use a CNN
only for feature extraction. The backbone of this network is VGG-16.

The self-attention mechanism, introduced in transformers, captures relationships
between different positions in a given sequence to compute a representation of the sequence
[120]. The Transformer architecture consists of an encoder and a decoder using stacked self-
attention and point-wise, fully connected layers. Chen et al. [44] propose the use of a CNN
and a transformer for image registration. In particular, the transformer is used to improve the
matching for good correspondences, that is, the network can learn long-range interactions
from sparse matches in order to avoid outliers. Moreover, Tu et al. [49] propose the use of a
Spatial Transformer Network (STN) to predict a transformation matrix. Hence, Transformers
are used in the registration process as a part of the general framework to perform a specific
task such as to generate a transformation matrix or improve the feature extraction.

GAN consists of a generator network and a discriminator network. The generator learns
to produce synthetic data by mapping random noise or latent vectors to the desired data
distribution. On the other hand, the discriminator distinguishes between real data samples
and fake samples generated by the generator [121]. In the context of registration, this archi-
tecture is used for image translation in order to generate a domain-to-domain mapping.
Pielawski et al. [34] use generative models such as pix2pix [30] and CycleGan [31] for image
translation before registration. In addition, Elsaeidy et al. [46] propose to use a GAN to con-
vert infrared images into optical images in order to perform a monomodal registration. The
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generator backbone is a U-Net 256, while the discriminator is tested with two architectures:
PatchGAN and PixelGAN. PatchGAN classifies individual patches and PixelGAN classifies
pixels. Besides, Wang et al. [50] propose a cross-modality perceptual style transfer network
for image translation, which is based on a GAN to generate pseudo infrared images.

4.2.3 Loss functions

The loss function is important for deep learning techniques during the learning process.
Several studies have proposed different loss functions for improving image registration.
Three loss functions are proposed in [117] for matching learning, self-distillation learning,
and reconstruction learning. The proposed loss functions include the triplet loss, the feature
consistency loss, and the reconstruction loss. The triplet loss aims to minimize the feature
distance of matching image pairs.While the feature consistency loss focuses on the similarity
of low-level and high-level features. The reconstruction loss constrains the matching features
betweenmodalities to be quite similar. Tang et al. [115] propose the use of structural similarity
as a loss function for the end-to-end registration process. Since this process is performed in
multiple scales, the overall loss is computed by summing the individual losses from each
scale.

Zhang et al. [51] propose a loss function that aims to maximize the dissimilarity between
the correct matched features and the nearby non-matching features. In [50], the authors
propose the use of bidirectional similarity loss for the registration process and Multiscale
Structural Similarity Index (MS-SSIM) loss for the fusion process. This aims to maintain
the sharper intensity distribution of the fused image. Furthermore, Arar et al. [54] use L1-
reconstruction loss and adversarial loss.

4.2.4 Training process

The next step is to train the network using a dataset ofmultimodal image pairs. The end-to-end
networks learn to register the moving image to the fixed image during training. The training
is commonly performed in one stage. However, some approaches perform the training in two
stages. For instance, in [115], the coarse-to-fine registration network, which consists of three
models stacked in a cascading way, is trained in two stages: initialization and joint training.
In the initialization stage, the models are trained individually and successively to initialize
the weights; that is, the first model is trained to obtain fixed weights for the second model in
the stacked framework. Then, in the joint training, the overall network is trained with no fixed
weights. On the other hand, some networks are not trained from scratch, that is, pre-trained
subnetworks can be used to fine-tune the learning process.

Discussion

It is worth mentioning that registration techniques can be performed in 2D or 3D, and there
are many variations in this pipeline depending on the specific task and modalities. The fun-
damental concept is to employ a deep learning model to learn the relationships between
images and use that learned model to align different modalities. Typically, a CNN serves as a
module for an end-to-end registration process. However, other architectures like Transform-
ers and GANs are integrated into the registration process for specific tasks, such as image
translation.
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4.3 Other deep learning approaches

Registration is an important task for other low-level vision tasks such as multimodal image
fusion where the images from the same scene are required to be aligned. In [122], authors
highlight the challenge of handling partial or globally unaligned multimodal images in image
fusion frameworks. Therefore, recent approaches have included a registration module within
the fusion framework. For instance, [44] emphasizes the importance of the registration process
in a subsequent image fusion network. In particular, the U2Fusion network [123] is employed
for fusion after the registration approach. Xu et al. [113] includes a registration module into
a fusion framework, referred to as RFNet. Furthermore, Wang et al. [50] present a fusion
framework that includes aMulti-LevelRefinementRegistrationNetwork (MMRN) to register
infrared and visible images.

Moreover, the registration process can be applied within vision application frameworks,
as demonstrated in the RGBT Salient Object Detection framework proposed by [49]. This
framework includes a Modality Alignment Module (MAM), comprising a spatial affine
transformation component, a feature-wise affine transformation component, and a dynamic
convolution layer component.

Discussion

Currently, there are a few approaches that combine multimodal registration and fusion. Thus,
for future works, it will be important to consider integrating registration as a prerequisite
procedure for fusion in a single deep learning-based framework, as they are complementary
tasks that can improve the performance of various applications, such as remote sensing,
security, autonomous driving, etc. Table 3 summarizes recent approaches for multimodal
image registration based on deep learning architectures.

5 Conclusions

In this manuscript, we have undertaken an extensive exploration of multimodal image reg-
istration techniques, encompassing both classical methodologies and state-of-the-art deep
learning-based solutions. By addressing the unique challenges and considerations inherent
to multimodal images, our review offers a valuable resource to researchers and practitioners
aiming to improve registration accuracy and broaden its applications across diverse domains.
As technology continues to evolve towards multi-sensor platforms, this review also catalyzes
the research community to conceive innovative solutions for the multimodal registration
problem. The main features of reviewed papers are thoughtfully summarized in two tables,
categorizing them according to their respective approaches: classicalmethodologies and deep
learning-based strategies. These tables provide readerswith a concise andorganizedoverview,
enabling them to quickly identify relevant studies and gain insights into the strengths and
limitations of each approach. Overall, this manuscript not only consolidates the existing
knowledge on multimodal image registration but also stimulates further advancements in
this critical area of research, setting the stage for enhanced capabilities in image fusion and
analysis.
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