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Abstract. The rotary inverted pendulum (RIP) is a problem difficult to control, several studies 

have been conducted where different control techniques have been applied. Literature reports 

that, although problem is nonlinear, classical PID controllers presents appropriate performances 

when applied to the system. In this paper, a comparative study of the performances of linear and 

nonlinear PID structures is carried out. The control algorithms are evaluated in the RIP system, 

using indices of performance and power consumption, which allow the categorization of control 

strategies according to their performance. This article also presents the modeling system, which 

has been estimated some of the parameters involved in the RIP system, using computer-aided 

design tools (CAD) and experimental methods or techniques proposed by several authors 

attended. The results indicate a better performance of the nonlinear controller with an increase 

in the robustness and faster response than the linear controller. 

1.  Introduction 

The rotary inverted pendulum is a classic problem in the control systems area, which allows to evaluate 

performance and demonstrate the effectiveness of control techniques. The RIP system is a simple 

structure with not minimum phase multivariable unstable and highly nonlinear characteristics. It has a 

pendulum arm attached to a rotary instead of a moving car [1]. Several works have presented some  

methods to modeling dynamic systems such as: the used Euler-Lagrange in [2-6] with good result, so it 

is used to model the dynamics of rotary inverted pendulum shown in [7]. Moreover, the mathematical 

modeling used  with the iterative method of nonlinear least squares that uses the Trust-Region-Reflective 

Algorithm, which tries to minimize the error between the actual and simulated signals [8]. 

Research community has studied and proposed diverse improvements to the classical PID approach 

in RIP systems: linear PID with a direct control of each system variable [9], Fuzzy Logic focused on a 

fuzzy controller [10], Optimum state regulator [11], and genetic algorithm based controller (GA) [12]. 

All the proposed controllers referred in the articles in this paragraph aim to identify, optimize and 

stabilize systems in general. 

The research developed in this paper proposes to apply some methods, techniques and the use of 

CAD tools for estimating parameters that are not easy to measure and study because of the performance 

of RIP system by using a nonlinear control technique (nonlinear PID) presented in [13]. This nonlinear 

version is based on the classical method of Ziegler and Nichols tuning in the frequency domain. 
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This article is organized as follows: Section 1 presents the introduction, Section 2 describes the 

system used. Mathematical modelling for RIP system shown in section 3, section 4 estimating some 

parameters of the RIP system is performed. The validation of the model with the estimated parameters 

is shown in Section 5.Section 6 shows the design of linear and nonlinear PID controllers. Section 7 

shows the results and performance of the algorithms developed control. Finally, some conclusions are 

summarized in Section 8. 

2.  Description of the System  

The RIP system is controlled from a PC, therefore the system contains hardware and software that can 

be easily installed in a laboratory. Regarding the hardware, the system consists of panel start and stop 

emergency button, power supply, quadrature signal decoder with Arduino Mega, engine driver 

Sabertooth Dual 2x32A / 6V-24V and interface to a PC through the card PCI-1711 and CB-68LP 

connector block as shown in Figure 1. 

 

RIPS

COMPUTER

a(t)

q(t)

u(t)

DATA 
ADQUISITION 

ARDUINO 
MEGA

DRIVER

 
Figure 1.  Schematic architecture of the RIP system 

 

In order to measure the angular position of the pendulum and arm  ,a q  is used an incremental encoder 

model E50S8-600-3-type T-24, which measures with high precision (600 pulses per revolution), and the 

angle and direction of rotation through phases A and B  

3.  Mathematical model 

The RIP system consists of a cylindrical rod with freedom to oscillate about a fixed pivot, which is 

mounted on an arm following an angular movement as shown in Figure 2. 
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Figure 2.  The rotary inverted pendulum system 

 

The mathematical model for RIP system used in the present study is based in the work developed in 

[8], which representation is given by: 
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The RIP system is described in space state as follows: 
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The output is given by:  

1 3[   ]Ty x x                                                                 (3) 

      where, 

Pendulum position,  Pendulum velocity Arm position ,  Arm velocity,  Control signal to the motor : : ,  : : :ua a q q
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Each physical signal [    ]a a q q
 

 in state-space RIP system model is represented by: 1 2 3 4[    ]x x x x  

respectively. Some intermediate model variables and parameters area used: 

1 2 3 4 5 6

2 2,   ,  ,   ,,     ,P p p p p r m p p a DGJ m L m rL m gL m rk k k k k kL J J m r m rL V k u             (4)                    

4.  Parameter estimation 

In this section the parameters estimation of the RIP is performed that is the reason why  the system is 

analysed by parts, engine, driver, pendulum, and arm. 

 

4.1.  Parameter estimation for the engine 

To measure the motor parameters proceeds to undock the pendulum and analyse it independently. It 

starts with the estimation of the resistance and inductance of the motor armature, for which its terminals 

connected to NI ELVIS + National Instruments and at each angular position of the rotor several samples 

for resistance and inductance is taken. With these data it is possible to calculate an average whereby the 

values of 
aR  and 

aL is obtained.  

     Then, proceed to estimate the Back-emf constant (
bk ), constant electromagnetic torque (

tk ), 

moment of inertia of the rotor of the motor (
mJ ) and viscous friction coefficient of the motor (

rB ), for 

which the mechanical coupling between the motor shafts and encoder is performed. Similarly to the 

previous estimate the NI ELVIS II + module from National Instruments inductance and incremental 

encoder is used to measure angular velocity ( ) and the armature current (
ai ) for various input voltages 

to the motor (
aV ), using equation (5) Back-emf constant is estimated. 

  a a a
b

V R i
k




                                                    (5) 

      In electrical machines must be a balance between electric power and mechanical power is obtained 

that 
t bk k . To estimate the viscous friction coefficient of the engine (

rB ) is necessary to use the 

differential equation unloaded motor ( 0LT  ): 

m m

d
T J B

dt


                                                                 (6) 

where 
m b aT k i  represents the engine torque. We proceed to energize the motor with a constant voltage 

for a time, until it reaches a constant speed, the angular acceleration disappears directly obtaining the 

ratio of viscous friction coefficient, by eliminating the term of the derivative of angular velocity and 

clearing, the viscous friction coefficient is obtained: 

  b ak i
B


                                                                       (7) 

     Finally, it is estimated the moment of inertia of the rotor of the motor (
mJ ), for which the equation 

(8) is used. 

  mJ

B
                                                             (8) 

   Where the constant ( ), is known as the constant mechanical engine, which is measured 

experimentally, as a third of the time between switching off the motor without load at a constant speed 

and braking. 

 

 

4.2.  Estimating gain driver 

To estimate the gain driver it must be found the relationship between the input voltage and output 

generated by the engine driver Sabertooth Dual 2x32A / 6V-24V. The different values of voltage applied 

to the input and the output are measured, the slope of the line obtained proves to be 
DGK , as shown in 

Figure 3. 
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Figure 3.  Relationship input - output driver 

 

4.3.  Parameter estimation of the pendulum and arm 

The Pendulum mass (
pm ) is measured by an electronic precision balance, turn this value that is obtained 

from the CAD compared. The estimate of the length of rotation axis to the center of mass of the 

pendulum ( L ) and the moment of inertia of the pendulum (
pJ ) is also performed in CAD, for which 

the RIP is designed in the SolidsWorks software. For the coefficient of viscous friction in the pendulum, 

we proceed to measure the pendulum swing during free fall from a small height, as shown in Figure.4. 

 
Figure 4.  Setting the pendulum damped oscillation 

 

     The differential equation describing the oscillatory motion of the pendulum damped when it should 

fall from a small height, it is given by: 
2

2
0p p p

d d
J B m gL

dt dt

a a
a                                                  (9) 

Where  
p

d
B

dt

a
 , represents the damping produced by the friction between the pendulum and air. 

The solution to this equation is shown in (10): 

 
2

0 0cos
p

p

B t

J
e ta a  



                                             (10) 

The term / 2p pB t J   , corresponds to the damping constant of the wobble signal of the pendulum. 

For this constant experimentally the pendulum is positioned with a small initial angle and drops it until 

it stops. The response of the pendulum and its signal envelope can be approximated as shown in Figure.5. 
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Figure 5. Response damped oscillatory motion of the pendulum 

 

Finally, the estimation of the Rotating arm length (r) and the inertia moment arm Equivalent (
rJ ) is 

obtained from the RIP design CAD system made previously. 

5.  Validation of the model 

The estimated parameters for the RIP system experimentally, are shown in Table 1. 

 
  

Table 1. RIP system parameters. 

Parameters Value 

aR  - Armature resistance 

aL  - Armature inductance 

5.4351 Ω 

0.00188 mH 

bk  - Back-emf constant 

tk  - Constant electromagnetic torque                                 

1.1098V.s/rad 

1.1098 N.m/A 

DGk  - Gain driver 5.6354 

mJ  -Moment of inertia of the rotor of the motor 

rB  - Viscous friction coefficient of the motor 

0.00071 kg.m2 

                       0.04166 N.m.s/rad 

  g  - Gravity acceleration                    9.8 m/seg2 

pm  -Pendulum mass                              0.13417 kg 

rJ  - Equivalent inertia moment arm 

r - Rotating arm length 

L  - Length of rotation axis to the center of mass 

of the pendulum 

  
pJ  - Moment of inertia of the pendulum 

pB  - Viscous friction coefficient of the pendulum 

0.0078 kg.m2 

                                0.125 m 

 

0.19604 m 

 

 0.001882 kg.m2 

                    4.56798.10-4 N.m.s/rad 

The bound for control signal is set to -2.5V…+2.5V. These parameters are used in the evaluation of 

engine model and RIP system using MATLAB, this is discussed in section 5.1 and 5.2. 

 

5.1.  Evaluation of nonlinear engine model 

To validate the nonlinear engine model, is used a test signal square wave with the purpose of analyzing 

the dynamics of the real system and the nonlinear model. 

      Note that the square wave input can not be applied directly to the engine, so the engine driver Dual 

Sabertooth 2x32A / 6V-24V with gain DGK  , which manages the power consumption of the motor is 
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used. The applied input terminals of driver and engine angular position, is shown in Figure 6. The 

average angular position error between the nonlinear model and the actual system is -0.0023 (deg). 

 

    
 Figure 6. Response engine model to a square entry  

 

5.2.  Evaluation of nonlinear system model RIP 

To validate the nonlinear model of the RIP system proceeds to generate different test signals in order to 

validate the estimated model. In Figure 7 is shown, the response to an input made by combining 

sinusoids for the position of the pendulum and the arm, which an error average angular position is 

obtained  1.1981 (deg) for the pendulum and -0.4431 (deg) for the arm. 

 

 
Figure 7. Response nonlinear model and real RIP system to an input combination of sinusoids. 

6.  PID and PI Control Algorithms Design 

In this section, the development of the PID and PI controllers is carried out, the design of controllers 

involves the manipulation of a linear model. Thus, nonlinear RIPS model equation (1) is linearized 

around an equilibrium point given by the equation (11). 

 
2

0 0 cos 1 sina a a a a                                                   (11) 

      Linear models are represented trough transfer functions. Transfer functions of the pendulum and 

arm are indicated as follows in the equations (12) and (13) respectively: 

  ( )
5

3 2
( ) ( ) )71 2 6 3 4 8

PG s
d s

d s d d s d d s d d


     

                                           (12) 

0 1 2 3 4 5 6 7 8 9 10
-15

-10

-5

0

5

10

15

Time (sec.)

M
o
to

r 
P

o
si

ti
o
n

(d
eg

.)

 

 
Motor Model

Physical System

0 5 10 15
-60

-50

-40

-30

-20

-10

0

10

20

30

40

Time (sec.)

A
rm

 P
os

it
io

n
 (

d
eg

.)

 

 
NonLinear Model

Physical System

0 5 10 15
160

165

170

175

180

185

190

195

200

205

Time (sec.)

P
en

d
u

lu
m

 P
os

it
io

n
 (

d
eg

.)

 

 
NonLinear Model

Physical System

13th European Workshop on Advanced Control and Diagnosis (ACD 2016)                                     IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 783 (2017) 012047          doi:10.1088/1742-6596/783/1/012047

7



 

 

 

 

 

 

3

1 1 5 4 2 2 5 1 3 5 3 4 3

5 2 6 1 7 8 3

( )

4 2
                             ( )

2
5 1 3

( ) ( )72 3 2 4 8

: ( );   ( );   ( );     

 ;    ;    ;   

A

a a p r a r p a r

t DG b t b p t b

G s
d k s B s kp

s qs k d d s k d d sp

d R k k k k d R k B B k d R k k B B d R B k

d k k k d k k k d k B k d k k k


 

    

        

     2 1 2 2 2 6;    ;    t qk d k dp k d 

         (13)  

6.1.  Linear PID controller for the pendulum position. 

The control structure in the case of linear PID is quite different to the classical feedback loop, this, 

since the control target in our study case is the vertical position of the pendulum in 0a  degrees, 

rejecting the perturbation effects as it is indicated in Figure 8. 

 
Figure 8. Control structure for the balance of the pendulum 

 

The controller parameters of the PID are tuned by using SISOTOOL, which is a Matlab package. 

Specifically, the method utilized is LGR, the tuned controller is represented as follows: (14). 

2

1 1 1

1 1 1 1( )       : 0.6247;    25.8634;    244.4404
d p i

d p i

k s k s k
C s k k k

s

 
                   (14)  

6.2.  Linear PID controller design for the arm position. 

The design of the pendulum controller was presented in the former section, the development of the 

complete control structure is presented in this section. The structure is shown in Figure 9. 

 

 
Figure 9. Control structure for the arm position 

 

      In the design of the linear PI arm controller, it is important to take into account that the value of 
da  

should stabilize around zero degrees, taking into account the latter, the block diagram shown in Figure 

9, is reduced by using blocks algebra, the reduced block diagram leads to the following transfer function: 

2
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                                            (15) 

As in the tunning of the former controller, the arm controller is tuned by using SISOTOOL and the 

LGR method. The resultant controller is given by equation (16). 

2 2

2 2 2( )     : 5.7951;     5.4358
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                                     (16) 

 

 

 

 

 

 

 

 

 

  

Linear PID controller 

pendulum 
u 

 

 

 

Stabilized system 

Va

a 
Rotary Inverted 

Pendulum 
KDG 

C1(s) 

 

a
-


da

q

Linear PI controller 

Arm 

 

 

 

 

 

 

 

  

 

 

      

q

a

Linear PID controller 

pendulum 

u 

 

 

 

Stabilized system 
u2 

u1 Va

a 
Rotary Inverted 

Pendulum 
KDG C1(s) 

C2(s) 

  

 
dq

da 
-

-


 -

13th European Workshop on Advanced Control and Diagnosis (ACD 2016)                                     IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 783 (2017) 012047          doi:10.1088/1742-6596/783/1/012047

8



 

 

 

 

 

 

6.3.  Nonlinear PI controller design for the arm position 

In the design of the nonlinear PI controller, it is required to linearize the RIP model given by equation 

(2). First, it is important to define an equilibrium point. The corresponding equilibrium point will be 

represented as a parametrization with respect to the input of the system, equation (17) presents the 

equilibrium point. 
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The linearized model, which is represented by a state space model is presented in equation (18). 
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   (18) 

In control theory, an alternative way of systems representation is the transfer function. Thus, equation 

(14) is the transfer function obtained after linearization and parametrization of the nonlinear model. 
2

( ) ( )3 2 3 2
( ) ( )

( )
,   

( ) ( ) ) ( ( ) ( ) )
P U A UG s G s

hs ci fh is eh bi s dh ai

s b f s bf a ce s af cd s s b f s bf a ce s af cd
 

     

             

 (19)                                                                

 

It should be noticed that the transfer function presented in equation (19) are parametrized transfer 

functions with respect to the input U. As it is indicated in section 6.2, the control scheme is the same as 

the one presented in Figure 9 with the difference in the transfer function C2(s) which in the present study 

corresponds to a nonlinear PI. With the former considerations, a reduction of the system is possible. In 

equation (20), a reduced version of the transfer functions is presented. 

 

 

     

( )

2 ( ) 1 2 3 4 1

( ) 1

5 1 1 6 1 1 7 1

( )
 ( )   :  ;   ;   ;   

1 ( ) ( )

;     ;    

A U

dof U d

P U

p d i p i

G s
G s c i c eh bi c dh ai c hk b f

G s C s

c bf a ce hk k ci fh c af cd hk k ci fh c k ci fh

 
            

            

     (20) 

 

By using Ziegler-Nichols method, the ultimate response in frequency domain gives important 

information in order to obtain optimal controller parameters. Specifically, it is possible to obtain the 

ultimate period 
0 (U)P   and the ultimate gain

0 (U)K . In the approach presented in this study, the ultimate 

gain and period are obtained based on the transfer function 
2 ( ) ( )dof UG s   as follows: 
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 (21) 

In the nonlinear PI controller approach considered in this study, the nonlinear controller is 

generalized as follows: 

3 3

( ( ))0
( ) 0.54 ( ( ));     ( ) ( ) 0.45 ( ( ))( ( ))0

( ( ))0

v
d d

v

K z t
z t x t u t z t K z t x t

P z t
q q                (22) 

Where ( )z t   is defined as an additional state of the nonlinear controller of the arm. The control signal 

( )u t  is associated to the 
3 ( )x t  , which represents in the RIP system, the current arm position. 

7.  Performance Assessment 

The values of the identified parameters are used for modeling purposes and the evaluation of the PI and 

PID controllers using MATLAB / Simulink, which is discussed in section 7.1 to 7.3.                  

 

7.1.  Linear PID and PI controller evaluation 

In Figure 10 the responses of linear controllers are shown for the pendulum and arm respectively. 

For which different references are used as input, for a square wave arm 10 degrees, while for the 

pendulum input 0 degrees is used. The Stabilization times obtained for linear controllers are: 

stabilization time for the pendulum 0.2secSPt   and 3.25secSAt   arm.  

 

 
Figure 10. Responses of linear controllers for pendulum and arm position 

 

7.2.  Evaluation of the linear PID controller and nonlinear PI controller 

The input signals used in section 7.1 are again used in this section in order to evaluate the 

performance of the linear and nonlinear controller. The Figure 11 shows the responses of PID controllers 

linear and nonlinear PI with the respective control efforts. The Stabilization times obtained for the linear 

and nonlinear controller respectively are: stabilization time for the pendulum 0.2secSPt  and 

2.5secSAt  arm. 
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Figure 11. Response of linear and nonlinear controller for pendulum and arm position 

 

7.3.  Performance Evaluation of Linear vs nonlinear controllers in the RIP system 

This section shows the results of the comparison between the linear PID controller and PI nonlinear. To 

carry out this performance indices such as are used: IAE (absolute integral error) and ISU (integral 

square control signal deviation), which will allow us to measure the cumulative error that penalizes the 

monitoring process and the energy used by the controller respectively. These indices are given by 

equation (23). 

 
2

1 0

,          ( )
N N

e k k u ss

k k

IAE J r y ISU J u k u
 

                                               (23) 

     The numerical values of IAE and ISU for both drivers applied in the RIP system are shown in Table 

2. 

                      Table 2. Indices performance obtained with linear and non-linear controller. 
 Arm Position 

IAE 

Control Signal  

ISU 

Computing  

Time (sec) 

Linear Controller 5.3218 x 104 1.0644 x 103 7.8215 

Nonlinear Controller 4.8909 x 104 570.6625 29.1743 

 

      The values in Table 2 show that the nonlinear PI controller has better performance in energy used, 

as in following references for positioning the arm. In the case of positioning the pendulum a linear PID 

controller was designed. So when acting linear PI controller in the arm RIP system, the IAE linear PID 

controller pendulum is 6.1272 x 103, and when it acts nonlinear PI controller in the arm, the IAE linear 

PID controller pendulum is 2.9376 x 103, which shows an improvement in the performance of the linear 

PID controller for the pendulum, when the nonlinear PI acts on the arm.    

8.  Conclusions 

In this study, modeling, control and estimation of certain parameters of the inverted pendulum rotary 

experimentally, which has a satisfactory response we are performed. This model was used to design the 

PI and PID controllers for linear and nonlinear system. Of the assessment controllers shown that the 

performance of nonlinear PI control both reference tracking, and energy consumption is better than the 

linear PI control. Also, when the nonlinear PI controller acts on the arm of the system, the linear PID 

controller designed to position the pendulum vertically improves its efficiency. Although the 

computational time for the nonlinear controller is greater than the linear, a better result in energy 
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consumption and reference tracking is obtained. Future works aims to design a nonlinear for positioning 

the pendulum PID controller as well as using new control strategies for the RIP System. 
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