|
Rafael E. Rivadeneira, Angel D. Sappa, & Boris X. Vintimilla. (2020). Thermal Image Super-Resolution: a Novel Architecture and Dataset. In The 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2020); Valletta, Malta; 27-29 Febrero 2020 (Vol. 4, pp. 111–119).
Abstract: This paper proposes a novel CycleGAN architecture for thermal image super-resolution, together with a large
dataset consisting of thermal images at different resolutions. The dataset has been acquired using three thermal
cameras at different resolutions, which acquire images from the same scenario at the same time. The thermal
cameras are mounted in rig trying to minimize the baseline distance to make easier the registration problem.
The proposed architecture is based on ResNet6 as a Generator and PatchGAN as Discriminator. The novelty
on the proposed unsupervised super-resolution training (CycleGAN) is possible due to the existence of aforementioned thermal images—images of the same scenario with different resolutions. The proposed approach
is evaluated in the dataset and compared with classical bicubic interpolation. The dataset and the network are
available.
|
|