|
Xavier Soria, Angel D. Sappa, & Riad Hammoud. (2018). Wide-Band Color Imagery Restoration for RGB-NIR Single Sensor Image. Sensors 2018, 18(7), 2059.
Abstract: Multi-spectral RGB-NIR sensors have become ubiquitous in recent years. These sensors allow the visible and near-infrared spectral bands of a given scene to be captured at the same time. With such cameras, the acquired imagery has a compromised RGB color representation due to near-infrared bands (700–1100 nm) cross-talking with the visible bands (400–700 nm). This paper proposes two deep learning-based architectures to recover the full RGB color images, thus removing the NIR information from the visible bands. The proposed approaches directly restore the high-resolution RGB image by means of convolutional neural networks. They are evaluated with several outdoor images; both architectures reach a similar performance when evaluated in different scenarios and using different similarity metrics. Both of them improve the state of the art approaches.
|
|
|
Dennis G. Romero, A. F. Neto, T. F. Bastos, & Boris X. Vintimilla. (2012). An approach to automatic assistance in physiotherapy based on on-line movement identification.. Andean Region International Conference (ANDESCON), 2012 VI: IEEE.
Abstract: This paper describes a method for on-line movement identification, oriented to patient’s movement evaluation during physiotherapy. An analysis based on Mahalanobis distance between temporal windows is performed to identify the “idle/motion” state, which defines the beginning and end of the patient’s movement, for posterior patterns extraction based on Relative Wavelet Energy from sequences of invariant moments.
|
|
|
Ángel Morera, Á. S., A. Belén Moreno, Angel D. Sappa, & José F. Vélez. (2020). SSD vs. YOLO for Detection of Outdoor Urban Advertising Panels under Multiple Variabilities. In Sensors, Vol. 2020-August(16), pp. 1–23.
Abstract: This work compares Single Shot MultiBox Detector (SSD) and You Only Look Once (YOLO)
deep neural networks for the outdoor advertisement panel detection problem by handling multiple
and combined variabilities in the scenes. Publicity panel detection in images oers important
advantages both in the real world as well as in the virtual one. For example, applications like Google
Street View can be used for Internet publicity and when detecting these ads panels in images, it could
be possible to replace the publicity appearing inside the panels by another from a funding company.
In our experiments, both SSD and YOLO detectors have produced acceptable results under variable
sizes of panels, illumination conditions, viewing perspectives, partial occlusion of panels, complex
background and multiple panels in scenes. Due to the diculty of finding annotated images for the
considered problem, we created our own dataset for conducting the experiments. The major strength
of the SSD model was the almost elimination of False Positive (FP) cases, situation that is preferable
when the publicity contained inside the panel is analyzed after detecting them. On the other side,
YOLO produced better panel localization results detecting a higher number of True Positive (TP)
panels with a higher accuracy. Finally, a comparison of the two analyzed object detection models
with dierent types of semantic segmentation networks and using the same evaluation metrics is
also included.
|
|
|
Rosero Vasquez Shendry. (2020). Facial recognition: traditional methods vs. methods based on deep learning. Advances in Intelligent Systems and Computing – Information Technology and Systems Proceedings of ICITS 2020.615–625.
|
|
|
Jorge Alvarez Tello, Mireya Zapata, & Dennys Paillacho. (2019). Kinematic optimization of a robot head movements for the evaluation of human-robot interaction in social robotics. In 10th International Conference on Applied Human Factors and Ergonomics and the Affiliated Conferences (AHFE 2019), Washington D.C.; United States. Advances in Intelligent Systems and Computing (Vol. 975, pp. 108–118).
Abstract: This paper presents the simplification of the head movements from
the analysis of the biomechanical parameters of the head and neck at the
mechanical and structural level through CAD modeling and construction with
additive printing in ABS/PLA to implement non-verbal communication strategies and establish behavior patterns in the social interaction. This is using in the
denominated MASHI (Multipurpose Assistant robot for Social Human-robot
Interaction) experimental robotic telepresence platform, implemented by a
display with a fish-eye camera along with the mechanical mechanism, which
permits 4 degrees of freedom (DoF). In the development of mathematicalmechanical modeling for the kinematics codification that governs the robot and
the autonomy of movement, we have the Pitch, Roll, and Yaw movements, and
the combination of all of them to establish an active communication through
telepresence. For the computational implementation, it will be show the rotational matrix to describe the movement.
|
|
|
Carlos Monsalve, Alain April, & Alain Abran. (2011). Requirements Elicitation Using BPM Notations: Focusing on the Strategic Level Representation. In 10th WSEAS international conference on Applied computer and applied computational science (pp. 235–241). 1100 rue Notre-Dame Ouest, Montréal, Québec H3C 1K3 CANADA.
Abstract: Business process models (BPM) can be useful for requirements elicitation, among other uses. Since the active participation of all stakeholders is a key factor for successful requirements engineering, it is important that BPM be shared by all stakeholders. Unfortunately, organizations may end up with inconsistent BPM not covering all stakeholders’ needs and constraints. The use of multiple levels of abstraction (MLA), such as at the strategic, tactical and operational levels, is often used in various process-oriented initiatives to facilitate the consolidation of various stakeholders’ needs and constraints. This article surveys the use of MLA in recent BPM research publications and reports on a BPM action-research case study conducted in a Canadian organization, with the aim of exploring the usefulness of the strategic level.
|
|
|
Patricia L. Suarez, Angel D. Sappa, & Boris X. Vintimilla. (2017). Infrared Image Colorization based on a Triplet DCGAN Architecture. In 13th IEEE Workshop on Perception Beyond the Visible Spectrum – In conjunction with CVPR 2017. (This paper has been selected as “Best Paper Award” ).
|
|
|
Xavier Soria, & Angel D. Sappa. (2018). Improving Edge Detection in RGB Images by Adding NIR Channel. In 14th IEEE International Conference on Signal Image Technology & Internet based Systems (SITIS 2018).
|
|
|
Patricia L. Suarez, Angel D. Sappa, & Boris X. Vintimilla. (2018). Cross-spectral image dehaze through a dense stacked conditional GAN based approach. In 14th IEEE International Conference on Signal Image Technology & Internet based Systems (SITIS 2018).
Abstract: This paper proposes a novel approach to remove haze from RGB images using a near infrared images based on a dense stacked conditional Generative Adversarial Network (CGAN). The architecture of the deep network implemented receives, besides the images with haze, its corresponding image in the near infrared spectrum, which serve to accelerate the learning process of the details of the characteristics of the images. The model uses a triplet layer that allows the independence learning of each channel of the visible spectrum image to remove the haze on each color channel separately. A multiple loss function scheme is proposed, which ensures balanced learning between the colors and the structure of the images. Experimental results have shown that the proposed method effectively removes the haze from the images. Additionally, the proposed approach is compared with a state of the art approach showing better results.
|
|
|
Jorge L. Charco, Boris X. Vintimilla, & Angel D. Sappa. (2018). Deep learning based camera pose estimation in multi-view environment. In 14th IEEE International Conference on Signal Image Technology & Internet based Systems (SITIS 2018).
Abstract: This paper proposes to use a deep learning network architecture for relative camera pose estimation on a multi-view environment. The proposed network is a variant architecture of AlexNet to use as regressor for prediction the relative translation and rotation as output. The proposed approach is trained from scratch on a large data set that takes as input a pair of images from the same scene. This new architecture is compared with a previous approach using standard metrics, obtaining better results on the relative camera pose.
|
|