|
Patricia L. Suarez, Angel D. Sappa, & Boris X. Vintimilla. (2017). Learning to Colorize Infrared Images. In 15th International Conference on Practical Applications of Agents and Multi-Agent Systems.
|
|
|
Patricia L. Suarez, Angel D. Sappa, & Boris X. Vintimilla. (2017). Infrared Image Colorization based on a Triplet DCGAN Architecture. In 13th IEEE Workshop on Perception Beyond the Visible Spectrum – In conjunction with CVPR 2017. (This paper has been selected as “Best Paper Award” ).
|
|
|
Patricia L. Suarez, Angel D. Sappa, & Boris X. Vintimilla. (2019). Image patch similarity through a meta-learning metric based approach. In 15th International Conference on Signal Image Technology & Internet based Systems (SITIS 2019); Sorrento, Italia.
Abstract: Comparing images regions are one of the core methods used on computer vision for tasks like image classification, scene understanding, object detection and recognition. Hence, this paper proposes a novel approach to determine similarity of image regions (patches), in order to obtain the best representation of image patches. This problem has been studied by many researchers presenting different approaches, however, the ability to find the better criteria to measure the similarity on image regions are still a challenge. The present work tackles this problem using a few-shot metric based meta-learning framework able to compare image regions and determining a similarity measure to decide if there is similarity between the compared patches. Our model is training end-to-end from scratch. Experimental results
have shown that the proposed approach effectively estimates the similarity of the patches and, comparing it with the state of the art approaches, shows better results.
|
|
|
Patricia L. Suarez, D. C., Angel D. Sappa and Henry O. Velesaca. (2022). Transformer based Image Dehazing. In 16TH International Conference On Signal Image Technology & Internet Based Systems SITIS 2022..
|
|
|
Patricia L. Suárez, D. C., and Angel Sappa. (2021). Non-Homogeneous Haze Removal through a Multiple Attention Module Architecture. In 16 International Symposium on Visual Computing. Octubre 4-6, 2021. Lecture Notes in Computer Science (Vol. 13017, pp. 131-143).
|
|
|
Patricia L. Suárez, A. D. S., Boris X. Vintimilla. (2021). Cycle generative adversarial network: towards a low-cost vegetation index estimation. In IEEE International Conference on Image Processing (ICIP 2021).
Abstract: This paper presents a novel unsupervised approach to estimate the Normalized Difference Vegetation Index (NDVI).The NDVI is obtained as the ratio between information from the visible and near infrared spectral bands; in the current work, the NDVI is estimated just from an image of the visible spectrum through a Cyclic Generative Adversarial Network (CyclicGAN). This unsupervised architecture learns to estimate the NDVI index by means of an image translation between the red channel of a given RGB image and the NDVI unpaired index’s image. The translation is obtained by means of a ResNET architecture and a multiple loss function. Experimental results obtained with this unsupervised scheme show the validity of the implemented model. Additionally, comparisons with the state of the art approaches are provided showing improvements with the proposed approach.
|
|
|
Patricia L. Suárez, A. D. S. and B. X. V. (2021). Deep learning-based vegetation index estimation. In Generative Adversarial Networks for Image-to-Image Translation Book. (Chapter 9, Issue 2, pp. 205-232).
|
|
|
Patricia L. Suarez. (2020). Procesamiento y representación de imágenes multiespectrales usando técnicas de aprendizaje profundo (Ph.D. Angel Sappa, Director & Ph.D. Boris Vintimilla, Codirector.). Ph.D. thesis. In Ediciones FIEC-ESPOL..
|
|
|
Pabelco Zambrano, F. C., Héctor Villegas, Jonathan Paillacho, Doménica Pazmiño, Miguel Realpe. (2023). UAV Remote Sensing applications and current trends in crop monitoring and diagnostics: A Systematic Literature Review. In accepted in IEEE 13th International Conference on Pattern Recognition Systems (ICPRS) 2023, julio 4-7.
|
|
|
P. Ricaurte, C. Chilán, C. A. Aguilera-Carrasco, B. X. Vintimilla, & Angel D. Sappa. (2014). Performance Evaluation of Feature Point Descriptors in the Infrared Domain. In Computer Vision Theory and Applications (VISAPP), 2014 International Conference on, Lisbon, Portugal, 2013 (Vol. 1, pp. 545–550). IEEE.
Abstract: This paper presents a comparative evaluation of classical feature point descriptors when they are used in the long-wave infrared spectral band. Robustness to changes in rotation, scaling, blur, and additive noise are evaluated using a state of the art framework. Statistical results using an outdoor image data set are presented together with a discussion about the differences with respect to the results obtained when images from the visible spectrum are considered.
|
|