Henry O. Velesaca, P. L. S., Dario Carpio, and Angel D. Sappa. (2021). Synthesized Image Datasets: Towards an Annotation-Free Instance Segmentation Strategy. In 16 International Symposium on Visual Computing. Octubre 4-6, 2021. Lecture Notes in Computer Science (Vol. 13017, pp. 131–143).
|
Henry O. Velesaca, S. A., Patricia L. Suarez, Ángel Sanchez & Angel D. Sappa. (2020). Off-the-Shelf Based System for Urban Environment Video Analytics. In The 27th International Conference on Systems, Signals and Image Processing (IWSSIP 2020) (Vol. 2020-July, pp. 459–464).
Abstract: This paper presents the design and implementation details of a system build-up by using off-the-shelf algorithms for urban video analytics. The system allows the connection to public video surveillance camera networks to obtain the necessary
information to generate statistics from urban scenarios (e.g., amount of vehicles, type of cars, direction, numbers of persons, etc.). The obtained information could be used not only for traffic management but also to estimate the carbon footprint of urban scenarios. As a case study, a university campus is selected to
evaluate the performance of the proposed system. The system is implemented in a modular way so that it is being used as a testbed to evaluate different algorithms. Implementation results are provided showing the validity and utility of the proposed approach.
|
Henry O. Velesaca, Raul A. Mira, Patricia L. Suarez, Christian X. Larrea, & Angel D. Sappa. (2020). Deep Learning based Corn Kernel Classification. In The 1st International Workshop and Prize Challenge on Agriculture-Vision: Challenges & Opportunities for Computer Vision in Agriculture on the Conference Computer on Vision and Pattern Recongnition (CVPR 2020) (Vol. 2020-June, pp. 294–302).
Abstract: This paper presents a full pipeline to classify sample sets of corn kernels. The proposed approach follows a segmentation-classification scheme. The image segmentation is performed through a well known deep learning based
approach, the Mask R-CNN architecture, while the classification is performed by means of a novel-lightweight network specially designed for this task—good corn kernel, defective corn kernel and impurity categories are considered.
As a second contribution, a carefully annotated multitouching corn kernel dataset has been generated. This dataset has been used for training the segmentation and
the classification modules. Quantitative evaluations have been performed and comparisons with other approaches provided showing improvements with the proposed pipeline.
|
Patricia L. Suarez. (2020). Procesamiento y representación de imágenes multiespectrales usando técnicas de aprendizaje profundo (Ph.D. Angel Sappa, Director & Ph.D. Boris Vintimilla, Codirector.). Ph.D. thesis. In Ediciones FIEC-ESPOL..
|
Patricia L. Suarez, D. C., Angel D. Sappa and Henry O. Velesaca. (2022). Transformer based Image Dehazing. In 16TH International Conference On Signal Image Technology & Internet Based Systems SITIS 2022. (pp. 148–154).
|
Patricia L. Suarez, Angel D. Sappa, & Boris X. Vintimilla. (2019). Image patch similarity through a meta-learning metric based approach. In 15th International Conference on Signal Image Technology & Internet based Systems (SITIS 2019); Sorrento, Italia (pp. 511–517).
Abstract: Comparing images regions are one of the core methods used on computer vision for tasks like image classification, scene understanding, object detection and recognition. Hence, this paper proposes a novel approach to determine similarity of image regions (patches), in order to obtain the best representation of image patches. This problem has been studied by many researchers presenting different approaches, however, the ability to find the better criteria to measure the similarity on image regions are still a challenge. The present work tackles this problem using a few-shot metric based meta-learning framework able to compare image regions and determining a similarity measure to decide if there is similarity between the compared patches. Our model is training end-to-end from scratch. Experimental results
have shown that the proposed approach effectively estimates the similarity of the patches and, comparing it with the state of the art approaches, shows better results.
|
Patricia L. Suarez, Angel D. Sappa, & Boris X. Vintimilla. (2018). Cross-spectral image dehaze through a dense stacked conditional GAN based approach. In 14th IEEE International Conference on Signal Image Technology & Internet based Systems (SITIS 2018) (pp. 358–364).
Abstract: This paper proposes a novel approach to remove haze from RGB images using a near infrared images based on a dense stacked conditional Generative Adversarial Network (CGAN). The architecture of the deep network implemented receives, besides the images with haze, its corresponding image in the near infrared spectrum, which serve to accelerate the learning process of the details of the characteristics of the images. The model uses a triplet layer that allows the independence learning of each channel of the visible spectrum image to remove the haze on each color channel separately. A multiple loss function scheme is proposed, which ensures balanced learning between the colors and the structure of the images. Experimental results have shown that the proposed method effectively removes the haze from the images. Additionally, the proposed approach is compared with a state of the art approach showing better results.
|
Patricia L. Suarez, Angel D. Sappa, & Boris X. Vintimilla. (2018). Vegetation Index Estimation from Monospectral Images. In 15th International Conference, Image Analysis and Recognition (ICIAR 2018), Póvoa de Varzim, Portugal. Lecture Notes in Computer Science (Vol. 10882, pp. 353–362).
Abstract: This paper proposes a novel approach to estimate Normalized
Difference Vegetation Index (NDVI) from just the red channel of
a RGB image. The NDVI index is defined as the ratio of the difference
of the red and infrared radiances over their sum. In other words, information
from the red channel of a RGB image and the corresponding
infrared spectral band are required for its computation. In the current
work the NDVI index is estimated just from the red channel by training a
Conditional Generative Adversarial Network (CGAN). The architecture
proposed for the generative network consists of a single level structure,
which combines at the final layer results from convolutional operations
together with the given red channel with Gaussian noise to enhance
details, resulting in a sharp NDVI image. Then, the discriminative model
estimates the probability that the NDVI generated index came from the
training dataset, rather than the index automatically generated. Experimental
results with a large set of real images are provided showing that
a Conditional GAN single level model represents an acceptable approach
to estimate NDVI index.
|
Patricia L. Suarez, Angel D. Sappa, & Boris X. Vintimilla. (2018). Adaptive Harris Corners Detector Evaluated with Cross-Spectral Images. In International Conference on Information Technology & Systems (ICITS 2018). ICITS 2018. Advances in Intelligent Systems and Computing (Vol. 721).
Abstract: This paper proposes a novel approach to use cross-spectral
images to achieve a better performance with the proposed Adaptive Harris
corner detector comparing its obtained results with those achieved
with images of the visible spectra. The images of urban, field, old-building
and country category were used for the experiments, given the variety of
the textures present in these images, with which the complexity of the
proposal is much more challenging for its verification. It is a new scope,
which means improving the detection of characteristic points using crossspectral
images (NIR, G, B) and applying pruning techniques, the combination
of channels for this fusion is the one that generates the largest
variance based on the intensity of the merged pixels, therefore, it is that
which maximizes the entropy in the resulting Cross-spectral images.
Harris is one of the most widely used corner detection algorithm, so
any improvement in its efficiency is an important contribution in the
field of computer vision. The experiments conclude that the inclusion of
a (NIR) channel in the image as a result of the combination of the spectra,
greatly improves the corner detection due to better entropy of the
resulting image after the fusion, Therefore the fusion process applied to
the images improves the results obtained in subsequent processes such as
identification of objects or patterns, classification and/or segmentation.
|
Patricia L. Suarez, Angel D. Sappa, & Boris X. Vintimilla. (2017). Infrared Image Colorization based on a Triplet DCGAN Architecture. In 13th IEEE Workshop on Perception Beyond the Visible Spectrum – In conjunction with CVPR 2017. (This paper has been selected as “Best Paper Award” ) (Vol. 2017-July, pp. 212–217).
|