Gomer Rubio, & Wilton Agila. (2018). Dynamic Modeling of Fuel Cells in a Strategic Context. In 7th International Conference on Renewable Energy Research and Applications, ICRERA 2018. Paris, Francia..
|
W. Agila, Gomer Rubio, L. Miranda, & D. Sanaguano. (2019). Open Control Architecture for the Characterization and Control of the PEM Fuel Cell. In IEEE ETCM 2019 Fourth Ecuador Technical Chapters Meeting; Guayaquil, Ecuador.
Abstract: Proton exchange membrane (PEM) fuel cells, are an efficient and clean source of electrical energy. The analysis of its operation requires experimental work, which allows measuring, modeling and optimizing PEM fuel cells electrical behavior under different operating conditions. Therefore, having an experimentation platform that allows to easily carry out its study and control is essential. This research presents the design and development of an open instrumental system that allows measuring, controlling and determining the operating parameters of a PEM fuel cell. As results, the polarization curves, voltage-current, obtained by the system itself in different experimental conditions are shown. These curves are a very useful tool to evaluate the electrical behavior of the PEM battery.
|
Wilton Agila, Gomer Rubio, Francisco Vidal, & B. Lima. (2019). Real time Qualitative Model for estimate Water content in PEM Fuel Cell. In 8th International Conference on Renewable Energy Research and Applications (ICRERA 2019); Brasov, Rumania.
Abstract: To maintain optimum performance of the electrical
response of a fuel cell, a real time identification of the
malfunction situations is required. Critical fuel cell states depend,
among others, on the variable demand of electric load and are
directly related to the membrane hydration level. The real time
perception of relevant states in the PEM fuel cell states space, is
still a challenge for the PEM fuel cell control systems. Current
work presents the design and implementation of a methodology
based upon fuzzy decision techniques that allows real time
characterization of the dehydration and flooding states of a PEM
fuel cell. Real time state estimation is accomplished through a
perturbation-perception process on the PEM fuel cell and further
on voltage oscillation analysis. The real time implementation of
the perturbation-perception algorithm to detect PEM fuel cell
critical states is a novelty and a step forwards the control of the
PEM fuel cell to reach and maintain optimal performance.
|
Wilton Agila, Gomer Rubio, L. Miranda, & L. Vázquez. (2018). Qualitative Model of Control in the Pressure Stabilization of PEM Fuel Cell. In 7th International Conference on Renewable Energy Research and Applications, ICRERA 2018. Paris, Francia..
Abstract: This work describes an approximate reasoning
technique to deal with the non-linearity that occurs in the
stabilization of the pressure of anodic and cathodic gases of a
proton exchange membrane fuel cell (PEM). The implementation
of a supervisory element in the stabilization of the pressure of the
PEM cell is described. The fuzzy supervisor is a reference
control, it varies the value of the reference given to the classic
low-level controller, Proportional – Integral – Derivative (PID),
according to the speed of change of the measured pressure and
the change in the error of the pressure. The objective of the fuzzy
supervisor is to achieve a rapid response over time of the variable
pressure, avoiding unwanted overruns with respect to the
reference value. A comparative analysis is detailed with the
classic PID control to evaluate the operation of the "fuzzy
supervisor", with different flow values and different sizes of
active area of the PEM cell (electric power generated).
|