|
Dennys Paillacho, Cecilio Angulo, & Marta Díaz. (2015). An Exploratory Study of Group-Robot Social Interactions in a Cultural Center. In IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2015, International Conference on, Hamburg, Germany, 2015.
Abstract: This article describes an exploratory study of social human-robot interaction with the experimental robotic platform MASHI. The experiences were carried out in La B`obila Cultural Center in Barcelona, Spain to study the visitor preferences, characterize the groups and their spatial relationships in this open and unstructured environment. Results showed that visitors prefers to play and dialogue with the robot. Children have the highest interest in interacting with the robot, more than young and adult visitors. Most of the groups consisted of more than 3 visitors, however the size of the groups during interactions was continuously changed. In static situations, the observed spatial relationships denotes a social cohesion in the human-robot interactions.
|
|
|
Sebastián Fuenzalida, Keyla Toapanta, Jonathan S. Paillacho Corredores, & Dennys Paillacho. (2019). Forward and Inverse Kinematics of a Humanoid Robot Head for Social Human Robot-Interaction. In IEEE ETCM 2019 Fourth Ecuador Technical Chapters Meeting; Guayaquil, Ecuador.
Abstract: This paper presents an analysis of forward and inverse kinematics for a humanoid robotic head. The robotic head is used for the study of social human-robot interaction, such as a support tool to maintain the attention of patients with Autism Spectrum Disorder. The design of a parallel robot that emulates human head movements through a closed structure is presented. The position and orientation in this space is controlled by three servomotors. For this, the solutions made for the kinematic problem are encompassed by a geometric analysis of a mobile base. This article describes a non-systematic method,
called the geometric method, and compares some of the most popular existing methods considering reliability and computational cost. The geometric method avoids the use of changing reference systems, and instead uses geometric
relationships to directly obtain the position based on joint variables; and the other way around. Therefore, it converges in a few iterations and has a low computational cost.
|
|
|
Steven Silva, N. V., Dennys Paillacho, Samuel Millan-Norman & Juan David Hernandez. (2023). Online Social Robot Navigation in Indoor, Large and Crowded Environments. In IEEE International Conference on Robotics and Automation (ICRA 2023).
|
|