|
Patricia L. Suarez, Angel D. Sappa, & Boris X. Vintimilla. (2017). Colorizing Infrared Images through a Triplet Condictional DCGAN Architecture. In 19th International Conference on Image Analysis and Processing. (pp. 287–297).
|
|
|
Armin Mehri, & Angel D. Sappa. (2019). Colorizing Near Infrared Images through a Cyclic Adversarial Approach of Unpaired Samples. In Conference on Computer Vision and Pattern Recognition Workshops (CVPR 2019); Long Beach, California, United States (pp. 971–979).
Abstract: This paper presents a novel approach for colorizing
near infrared (NIR) images. The approach is based on
image-to-image translation using a Cycle-Consistent adversarial network for learning the color channels on unpaired dataset. This architecture is able to handle unpaired datasets. The approach uses as generators tailored
networks that require less computation times, converge
faster and generate high quality samples. The obtained results have been quantitatively—using standard evaluation
metrics—and qualitatively evaluated showing considerable
improvements with respect to the state of the art
|
|
|
Velesaca, H. O., Suárez, P. L., Mira, R., & Sappa, A.D. (2021). Computer Vision based Food Grain Classification: a Comprehensive Survey. In Computers and Electronics in Agriculture Journal. (Article number 106287), Vol. 187.
|
|
|
Roberto Jacome Galarza, Miguel-Andrés Realpe-Robalino, Chamba-Eras LuisAntonio, & Viñán-Ludeña MarlonSantiago and Sinche-Freire Javier-Francisco. (2019). Computer vision for image understanding. A comprehensive review. In International Conference on Advances in Emerging Trends and Technologies (ICAETT 2019); Quito, Ecuador (pp. 248–259).
Abstract: Computer Vision has its own Turing test: Can a machine describe the contents of an image or a video in the way a human being would do? In this paper, the progress of Deep Learning for image recognition is analyzed in order to know the answer to this question. In recent years, Deep Learning has increased considerably the precision rate of many tasks related to computer vision. Many datasets of labeled images are now available online, which leads to pre-trained models for many computer vision applications. In this work, we gather information of the latest techniques to perform image understanding and description. As a conclusion we obtained that the combination of Natural Language Processing (using Recurrent Neural Networks and Long Short-Term Memory) plus Image Understanding (using Convolutional Neural Networks) could bring new types of powerful and useful applications in which the computer will be able to answer questions about the content of images and videos. In order to build datasets of labeled images, we need a lot of work and most of the datasets are built using crowd work. These new applications have the potential to increase the human machine interaction to new levels of usability and user’s satisfaction.
|
|
|
Michael Teutsch, A. S. & R. H. (2021). Computer Vision in the Infrared Spectrum: Challenges and ApproachesComputer Vision in the Infrared Spectrum: Challenges and Approaches. Synthesis Lectures on Computer Vision, Vol. 10 No. 2, pp. 138.
|
|
|
M. Oliveira, L. Seabra Lopes, G. Hyun Lim, S. Hamidreza Kasaei, Angel D. Sappa, & A. Tomé. (2015). Concurrent Learning of Visual Codebooks and Object Categories in Open- ended Domains. In Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International Conference on, Hamburg, Germany, 2015 (pp. 2488–2495). Hamburg, Germany: IEEE.
Abstract: In open-ended domains, robots must continuously learn new object categories. When the training sets are created offline, it is not possible to ensure their representativeness with respect to the object categories and features the system will find when operating online. In the Bag of Words model, visual codebooks are usually constructed from training sets created offline. This might lead to non-discriminative visual words and, as a consequence, to poor recognition performance. This paper proposes a visual object recognition system which concurrently learns in an incremental and online fashion both the visual object category representations as well as the codebook words used to encode them. The codebook is defined using Gaussian Mixture Models which are updated using new object views. The approach contains similarities with the human visual object recognition system: evidence suggests that the development of recognition capabilities occurs on multiple levels and is sustained over large periods of time. Results show that the proposed system with concurrent learning of object categories and codebooks is capable of learning more categories, requiring less examples, and with similar accuracies, when compared to the classical Bag of Words approach using codebooks constructed offline.
|
|
|
Patricia Súarez, H. V., Dario Carpio & Angel Sappa. (2023). Corn Kernel Classification From Few Training Samples. In journal Artificial Intelligence in Agriculture, Vol. 9, pp. 89–99.
|
|
|
Jacome-Galarza L.-R. (2021). Crop yield prediction utilizing multimodal deep learning. In 16th Iberian Conference on Information Systems and Technologies, CISTI 2021, junio 23 – 26, 2021.
Abstract: La agricultura de precisión es una práctica vital para
mejorar la producción de cosechas. El presente trabajo tiene
como objetivo desarrollar un modelo multimodal de aprendizaje
profundo que es capaz de producir un mapa de salud de
cosechas. El modelo recibe como entradas imágenes multiespectrales
y datos de sensores de campo (humedad,
temperatura, estado del suelo, etc.) y crea un mapa de
rendimiento de la cosecha. La utilización de datos multimodales
tiene como finalidad extraer patrones ocultos del estado de salud
de las cosechas y de esta manera obtener mejores resultados que
los obtenidos mediante los índices de vegetación.
|
|
|
Patricia L. Suarez, Angel D. Sappa, & Boris X. Vintimilla. (2018). Cross-spectral image dehaze through a dense stacked conditional GAN based approach. In 14th IEEE International Conference on Signal Image Technology & Internet based Systems (SITIS 2018) (pp. 358–364).
Abstract: This paper proposes a novel approach to remove haze from RGB images using a near infrared images based on a dense stacked conditional Generative Adversarial Network (CGAN). The architecture of the deep network implemented receives, besides the images with haze, its corresponding image in the near infrared spectrum, which serve to accelerate the learning process of the details of the characteristics of the images. The model uses a triplet layer that allows the independence learning of each channel of the visible spectrum image to remove the haze on each color channel separately. A multiple loss function scheme is proposed, which ensures balanced learning between the colors and the structure of the images. Experimental results have shown that the proposed method effectively removes the haze from the images. Additionally, the proposed approach is compared with a state of the art approach showing better results.
|
|
|
Patricia L. Suarez, Angel D. Sappa, & Boris X. Vintimilla. (2017). Cross-spectral Image Patch Similarity using Convolutional Neural Network. In 2017 IEEE International Workshop of Electronics, Control, Measurement, Signals and their application to Mechatronics (ECMSM) (pp. 1–5).
|
|