|
Rubio, G. A., Agila, W.E. (2021). A fuzzy model to manage water in polymer electrolyte membrane fuel cells. In Processes Journal. (Vol. 9, Issue 6, Article number 904), .
Abstract: In this paper, a fuzzy model is presented to determine in real-time the degree of dehydration or flooding of a proton exchange membrane of a fuel cell, to optimize its electrical response and consequently, its autonomous operation. By applying load, current and flux variations in the dry, normal, and flooded states of the membrane, it was determined that the temporal evolution of the fuel cell voltage is characterized by changes in slope and by its voltage oscillations. The results were validated using electrochemical impedance spectroscopy and show slope changes from 0.435 to 0.52 and oscillations from 3.6 mV to 5.2 mV in the dry state, and slope changes from 0.2 to 0.3 and oscillations from 1 mV to 2 mV in the flooded state. The use of fuzzy logic is a novelty and constitutes a step towards the progressive automation of the supervision, perception, and intelligent control of fuel cells, allowing them to reduce their risks and increase their economic benefits.
|
|
|
Michael Teutsch, A. S. & R. H. (2021). Computer Vision in the Infrared Spectrum: Challenges and ApproachesComputer Vision in the Infrared Spectrum: Challenges and Approaches. Synthesis Lectures on Computer Vision. Volumen 10, No. 2 Pages 138, .
|
|
|
Santos, V., Sappa, A.D., Oliveira, M. & de la Escalera, A. (2021). Editorial: Special Issue on Autonomous Driving and Driver Assistance Systems – Some Main Trends. In Journal: Robotics and Autonomous Systems. (Vol. 144, Article number 103832), .
|
|
|
Velesaca, H. O., Suárez, P. L., Mira, R., & Sappa, A.D. (2021). Computer Vision based Food Grain Classification: a Comprehensive Survey. In Computers and Electronics in Agriculture Journal. (Vol. 187, Article number 106287), .
|
|
|
Daniela Rato, M. O., Victor Santos, Manuel Gomes & Angel Sappa. (2022). A Sensor-to-Pattern Calibration Framework for Multi-Modal Industrial Collaborative Cells. Journal of Manufacturing Systems, Vol. 64, pp 497 – 507.
|
|
|
Pereira J., M. M. & W. A. (2021). Qualitative Model to Maximize Shrimp Growth at Low Cost. 5th Ecuador Technical Chapters Meeting (ETCM 2021), Octubre 12 – 15, .
|
|
|
Xavier Soria, G. P. - J. & A. S. (2022). LDC: Lightweight Dense CNN for Edge Detection. IEEE Access journal, Vol. 10, pp 68281 – 68290.
|
|
|
Ulises Gildardo Quiroz Antúnez, A. I. M. R., María Fernanda Calderón Vega, Adán Guillermo Ramírez García. (2022). APTITUDE OF COFFEE (COFFEA ARABICA L.) AND CACAO (THEOBROMA CACAO L.) CROPS CONSIDERING CLIMATE CHANGE. Granja, 36(2).
|
|
|
Armin Mehri, Parichehr Behjati, & Angel Domingo Sappa. (2023). TnTViT-G: Transformer in Transformer Network for Guidance Super Resolution. IEEE Access, Vol. 11, pp. 11529–11540.
|
|
|
Ángel Morera, Á. S., A. Belén Moreno, Angel D. Sappa, & José F. Vélez. (2020). SSD vs. YOLO for Detection of Outdoor Urban Advertising Panels under Multiple Variabilities. In Sensors, Vol. 2020-August(16), pp. 1–23.
Abstract: This work compares Single Shot MultiBox Detector (SSD) and You Only Look Once (YOLO)
deep neural networks for the outdoor advertisement panel detection problem by handling multiple
and combined variabilities in the scenes. Publicity panel detection in images oers important
advantages both in the real world as well as in the virtual one. For example, applications like Google
Street View can be used for Internet publicity and when detecting these ads panels in images, it could
be possible to replace the publicity appearing inside the panels by another from a funding company.
In our experiments, both SSD and YOLO detectors have produced acceptable results under variable
sizes of panels, illumination conditions, viewing perspectives, partial occlusion of panels, complex
background and multiple panels in scenes. Due to the diculty of finding annotated images for the
considered problem, we created our own dataset for conducting the experiments. The major strength
of the SSD model was the almost elimination of False Positive (FP) cases, situation that is preferable
when the publicity contained inside the panel is analyzed after detecting them. On the other side,
YOLO produced better panel localization results detecting a higher number of True Positive (TP)
panels with a higher accuracy. Finally, a comparison of the two analyzed object detection models
with dierent types of semantic segmentation networks and using the same evaluation metrics is
also included.
|
|