|   | 
Details
   web
Records
Author (up) Carlos Monsalve; Alain April; Alain Abran
Title Requirements Elicitation Using BPM Notations: Focusing on the Strategic Level Representation Type Conference Article
Year 2011 Publication 10th WSEAS international conference on Applied computer and applied computational science Abbreviated Journal
Volume Issue Pages 235-241
Keywords Business process modeling, levels of abstraction, requirements elicitation, case study, action research
Abstract Business process models (BPM) can be useful for requirements elicitation, among other uses. Since the active participation of all stakeholders is a key factor for successful requirements engineering, it is important that BPM be shared by all stakeholders. Unfortunately, organizations may end up with inconsistent BPM not covering all stakeholders’ needs and constraints. The use of multiple levels of abstraction (MLA), such as at the strategic, tactical and operational levels, is often used in various process-oriented initiatives to facilitate the consolidation of various stakeholders’ needs and constraints. This article surveys the use of MLA in recent BPM research publications and reports on a BPM action-research case study conducted in a Canadian organization, with the aim of exploring the usefulness of the strategic level.
Address CIDIS – Electrical and Computer Engineering Department Escuela Superior Politécnica del Litoral Km. 30.5 vía Perimetral
Corporate Author Thesis
Publisher Place of Publication 1100 rue Notre-Dame Ouest, Montréal, Québec H3C 1K3 CANADA Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 16
Permanent link to this record
 

 
Author (up) Charco, J.L., Sappa, A.D., Vintimilla, B.X., Velesaca, H.O.
Title Camera pose estimation in multi-view environments:from virtual scenarios to the real world Type Journal Article
Year 2021 Publication In Image and Vision Computing Journal. (Article number 104182) Abbreviated Journal
Volume Vol. 110 Issue Pages
Keywords Relative camera pose estimation, Domain adaptation, Siamese architecture, Synthetic data, Multi-view environments
Abstract This paper presents a domain adaptation strategy to efficiently train network architectures for estimating the relative camera pose in multi-view scenarios. The network architectures are fed by a pair of simultaneously acquired

images, hence in order to improve the accuracy of the solutions, and due to the lack of large datasets with pairs of

overlapped images, a domain adaptation strategy is proposed. The domain adaptation strategy consists on transferring the knowledge learned from synthetic images to real-world scenarios. For this, the networks are firstly

trained using pairs of synthetic images, which are captured at the same time by a pair of cameras in a virtual environment; and then, the learned weights of the networks are transferred to the real-world case, where the networks are retrained with a few real images. Different virtual 3D scenarios are generated to evaluate the

relationship between the accuracy on the result and the similarity between virtual and real scenarios—similarity

on both geometry of the objects contained in the scene as well as relative pose between camera and objects in the

scene. Experimental results and comparisons are provided showing that the accuracy of all the evaluated networks for estimating the camera pose improves when the proposed domain adaptation strategy is used,

highlighting the importance on the similarity between virtual-real scenarios.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 147
Permanent link to this record
 

 
Author (up) Cristhian A. Aguilera, Cristhian Aguilera, Cristóbal A. Navarro, & Angel D. Sappa
Title Fast CNN Stereo Depth Estimation through Embedded GPU Devices Type Journal Article
Year 2020 Publication Sensors 2020 Abbreviated Journal
Volume Vol. 2020-June Issue 11 Pages pp. 1-13
Keywords stereo matching; deep learning; embedded GPU
Abstract Current CNN-based stereo depth estimation models can barely run under real-time

constraints on embedded graphic processing unit (GPU) devices. Moreover, state-of-the-art

evaluations usually do not consider model optimization techniques, being that it is unknown what is

the current potential on embedded GPU devices. In this work, we evaluate two state-of-the-art models

on three different embedded GPU devices, with and without optimization methods, presenting

performance results that illustrate the actual capabilities of embedded GPU devices for stereo depth

estimation. More importantly, based on our evaluation, we propose the use of a U-Net like architecture

for postprocessing the cost-volume, instead of a typical sequence of 3D convolutions, drastically

augmenting the runtime speed of current models. In our experiments, we achieve real-time inference

speed, in the range of 5–32 ms, for 1216  368 input stereo images on the Jetson TX2, Jetson Xavier,

and Jetson Nano embedded devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 14248220 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 132
Permanent link to this record
 

 
Author (up) Cristhian A. Aguilera; Angel D. Sappa; R. Toledo
Title LGHD: A feature descriptor for matching across non-linear intensity variations Type Conference Article
Year 2015 Publication IEEE International Conference on, Quebec City, QC, 2015 Abbreviated Journal
Volume Issue Pages 178 - 181
Keywords Feature descriptor, multi-modal, multispectral, NIR, LWIR
Abstract This paper presents a new feature descriptor suitable to the task of matching features points between images with nonlinear intensity variations. This includes image pairs with significant illuminations changes, multi-modal image pairs and multi-spectral image pairs. The proposed method describes the neighbourhood of feature points combining frequency and spatial information using multi-scale and multi-oriented Log- Gabor filters. Experimental results show the validity of the proposed approach and also the improvements with respect to the state of the art.
Address
Corporate Author Thesis
Publisher IEEE Place of Publication Quebec City, QC, Canada Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference 2015 IEEE International Conference on Image Processing (ICIP)
Notes Approved no
Call Number cidis @ cidis @ Serial 40
Permanent link to this record
 

 
Author (up) Cristhian A. Aguilera; Angel D. Sappa; Ricardo Toledo
Title Cross-Spectral Local Descriptors via Quadruplet Network Type Journal Article
Year 2017 Publication In Sensors Journal Abbreviated Journal
Volume Vol. 17 Issue Pages pp. 873
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number gtsi @ user @ Serial 64
Permanent link to this record
 

 
Author (up) Cristhian A. Aguilera; Cristhian Aguilera; Angel D. Sappa
Title Melamine faced panels defect classification beyond the visible spectrum. Type Journal Article
Year 2018 Publication In Sensors 2018 Abbreviated Journal
Volume Vol. 11 Issue Issue 11 Pages
Keywords
Abstract In this work, we explore the use of images from different spectral bands to classify defects in melamine faced panels, which could appear through the production process. Through experimental evaluation, we evaluate the use of images from the visible (VS), near-infrared (NIR), and long wavelength infrared (LWIR), to classify the defects using a feature descriptor learning approach together with a support vector machine classifier. Two descriptors were evaluated, Extended Local Binary Patterns (E-LBP) and SURF using a Bag of Words (BoW) representation. The evaluation was carried on with an image set obtained during this work, which contained five different defect categories that currently occurs in the industry. Results show that using images from beyond

the visual spectrum helps to improve classification performance in contrast with a single visible spectrum solution.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number gtsi @ user @ Serial 89
Permanent link to this record
 

 
Author (up) Cristhian A. Aguilera; Francisco J. Aguilera; Angel D. Sappa; Ricardo Toledo
Title Learning crossspectral similarity measures with deep convolutional neural networks Type Conference Article
Year 2016 Publication IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) Workshops Abbreviated Journal
Volume Issue Pages 267-275
Keywords
Abstract The simultaneous use of images from different spectra can be helpful to improve the performance of many com- puter vision tasks. The core idea behind the usage of cross- spectral approaches is to take advantage of the strengths of each spectral band providing a richer representation of a scene, which cannot be obtained with just images from one spectral band. In this work we tackle the cross-spectral image similarity problem by using Convolutional Neural Networks (CNNs). We explore three different CNN archi- tectures to compare the similarity of cross-spectral image patches. Specifically, we train each network with images from the visible and the near-infrared spectrum, and then test the result with two public cross-spectral datasets. Ex- perimental results show that CNN approaches outperform the current state-of-art on both cross-spectral datasets. Ad- ditionally, our experiments show that some CNN architec- tures are capable of generalizing between different cross- spectral domains.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 48
Permanent link to this record
 

 
Author (up) Cristhian A. Aguilera; Xaver Soria; Angel D. Sappa; Ricardo Toledo
Title RGBN Multispectral Images: a Novel Color Restoration Approach Type Conference Article
Year 2017 Publication 15th International Conference on Practical Applications of Agents and Multi-Agent Systems Abbreviated Journal
Volume 619 Issue Pages 155-163
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 59
Permanent link to this record
 

 
Author (up) Cristina L. Abad; Yi Lu; Roy H. Campbell
Title DARE: Adaptive Data Replication for Efficient Cluster Scheduling Type Conference Article
Year 2011 Publication IEEE International Conference on Cluster Computing, 2011 Abbreviated Journal
Volume Issue Pages 159 - 168
Keywords MapReduce, replication, scheduling, locality
Abstract Placing data as close as possible to computation is a common practice of data intensive systems, commonly referred to as the data locality problem. By analyzing existing production systems, we confirm the benefit of data locality and find that data have different popularity and varying correlation of accesses. We propose DARE, a distributed adaptive data replication algorithm that aids the scheduler to achieve better data locality. DARE solves two problems, how many replicas to allocate for each file and where to place them, using probabilistic sampling and a competitive aging algorithm independently at each node. It takes advantage of existing remote data accesses in the system and incurs no extra network usage. Using two mixed workload traces from Facebook, we show that DARE improves data locality by more than 7 times with the FIFO scheduler in Hadoop and achieves more than 85% data locality for the FAIR scheduler with delay scheduling. Turnaround time and job slowdown are reduced by 19% and 25%, respectively.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number cidis @ cidis @ Serial 21
Permanent link to this record
 

 
Author (up) Daniela Rato, Miguel Oliviera, Victor Santos, Manuel Gomes & Angel Sappa
Title A Sensor-to-Pattern Calibration Framework for Multi-Modal Industrial Collaborative Cells. Type Journal Article
Year 2022 Publication Journal of Manufacturing Systems Abbreviated Journal
Volume Vol. 64 Issue Pages pp. 497-507
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number cidis @ cidis @ Serial 184
Permanent link to this record