|   | 
Details
   web
Records
Author (down) Miguel Realpe; Jonathan S. Paillacho Corredores; Joe Saverio & Allan Alarcon
Title Open Source system for identification of corn leaf chlorophyll contents based on multispectral images Type Conference Article
Year 2019 Publication International Conference on Applied Technologies (ICAT 2019); Quito, Ecuador Abbreviated Journal
Volume Issue Pages 572-581
Keywords
Abstract It is important for farmers to know the level of chlorophyll in plants since this depends on the treatment they should give to their crops. There are two common classic methods to get chlorophyll values: from laboratory analysis and electronic devices. Both methods obtain the chlorophyll level of one sample at a time, although they can be destructive. The objective of this research is to develop a system that allows obtaining the chlorophyll level of plants using images.

Python programming language and different libraries of that language were used to develop the solution. It was decided to implement an image labeling module, a simple linear regression and a prediction module. The first module was used to create a database that links the values of the images with those of chlorophyll, which was then used to obtain linear regression in order to determine the relationship between these variables. Finally, the linear

regression was used in the prediction system to obtain chlorophyll values from the images. The linear regression was trained with 92 images, obtaining a root-mean-square error of 7.27 SPAD units. While the testing was perform using 10 values getting a maximum error of 15.5%.

It is concluded that the system is appropriate for chlorophyll contents identification of corn leaves in field tests.

However, it can also be adapted for other measurement and crops. The system can be downloaded at github.com/JoeSvr95/NDVI-Checking [1].
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number gtsi @ user @ Serial 116
Permanent link to this record
 

 
Author (down) Miguel Realpe; Boris X. Vintimilla; Ljubo Vlacic
Title Sensor Fault Detection and Diagnosis for autonomous vehicles Type Conference Article
Year 2015 Publication 2nd International Conference on Mechatronics, Automation and Manufacturing (ICMAM 2015), International Conference on, Singapur, 2015 Abbreviated Journal
Volume 30 Issue MATEC Web of Conferences Pages 1-6
Keywords
Abstract In recent years testing autonomous vehicles on public roads has become a reality. However, before having autonomous vehicles completely accepted on the roads, they have to demonstrate safe operation and reliable interaction with other traffic participants. Furthermore, in real situations and long term operation, there is always the possibility that diverse components may fail. This paper deals with possible sensor faults by defining a federated sensor data fusion architecture. The proposed architecture is designed to detect obstacles in an autonomous vehicle’s environment while detecting a faulty sensor using SVM models for fault detection and diagnosis. Experimental results using sensor information from the KITTI dataset confirm the feasibility of the proposed architecture to detect soft and hard faults from a particular sensor.
Address
Corporate Author Thesis
Publisher EDP Sciences Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 42
Permanent link to this record
 

 
Author (down) Miguel Realpe; Boris X. Vintimilla; Ljubo Vlacic
Title Multi-sensor Fusion Module in a Fault Tolerant Perception System for Autonomous Vehicles Type Journal Article
Year 2016 Publication Journal of Automation and Control Engineering (JOACE) Abbreviated Journal
Volume Vol. 4 Issue Pages pp. 430-436
Keywords Fault Tolerance, Data Fusion, Multi-sensor Fusion, Autonomous Vehicles, Perception System
Abstract Driverless vehicles are currently being tested on public roads in order to examine their ability to perform in a safe and reliable way in real world situations. However, the long-term reliable operation of a vehicle’s diverse sensors and the effects of potential sensor faults in the vehicle system have not been tested yet. This paper is proposing a sensor fusion architecture that minimizes the influence of a sensor fault. Experimental results are presented simulating faults by introducing displacements in the sensor information from the KITTI dataset.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 51
Permanent link to this record
 

 
Author (down) Miguel Realpe; Boris X. Vintimilla; Ljubo Vlacic
Title A Fault Tolerant Perception system for autonomous vehicles Type Conference Article
Year 2016 Publication 35th Chinese Control Conference (CCC2016), International Conference on, Chengdu Abbreviated Journal
Volume Issue Pages 1-6
Keywords Fault Tolerant Perception, Sensor Data Fusion, Fault Tolerance, Autonomous Vehicles, Federated Architecture
Abstract Driverless vehicles are currently being tested on public roads in order to examine their ability to perform in a safe and reliable way in real world situations. However, the long-term reliable operation of a vehicle’s diverse sensors and the effects of potential sensor faults in the vehicle system have not been tested yet. This paper is proposing a sensor fusion architecture that minimizes the influence of a sensor fault. Experimental results are presented simulating faults by introducing displacements in the sensor information from the KITTI dataset.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 52
Permanent link to this record
 

 
Author (down) Miguel Realpe; Boris X. Vintimilla; L. Vlacic
Title Towards Fault Tolerant Perception for autonomous vehicles: Local Fusion. Type Conference Article
Year 2015 Publication IEEE 7th International Conference on Cybernetics and Intelligent Systems (CIS) and IEEE Conference on Robotics, Automation and Mechatronics (RAM), Siem Reap, 2015. Abbreviated Journal
Volume Issue Pages 253-258
Keywords
Abstract Many robust sensor fusion strategies have been developed in order to reliably detect the surrounding environments of an autonomous vehicle. However, in real situations there is always the possibility that sensors or other components may fail. Thus, internal modules and sensors need to be monitored to ensure their proper function. This paper introduces a general view of a perception architecture designed to detect and classify obstacles in an autonomous vehicle's environment using a fault tolerant framework, whereas elaborates the object detection and local fusion modules proposed in order to achieve the modularity and real-time process required by the system.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 37
Permanent link to this record
 

 
Author (down) Miguel Oliveira; Vítor Santos; Angel D. Sappa; Paulo Dias; A. Paulo Moreira
Title Incremental Scenario Representations for Autonomous Driving using Geometric Polygonal Primitives Type Journal Article
Year 2016 Publication Robotics and Autonomous Systems Journal Abbreviated Journal
Volume Vol. 83 Issue Pages pp. 312-325
Keywords Incremental scene reconstructionPoint cloudsAutonomous vehiclesPolygonal primitives
Abstract When an autonomous vehicle is traveling through some scenario it receives a continuous stream of sensor data. This sensor data arrives in an asynchronous fashion and often contains overlapping or redundant information. Thus, it is not trivial how a representation of the environment observed by the vehicle can be created and updated over time. This paper presents a novel methodology to compute an incremental 3D representation of a scenario from 3D range measurements. We propose to use macro scale polygonal primitives to model the scenario. This means that the representation of the scene is given as a list of large scale polygons that describe the geometric structure of the environment. Furthermore, we propose mechanisms designed to update the geometric polygonal primitives over time whenever fresh sensor data is collected. Results show that the approach is capable of producing accurate descriptions of the scene, and that it is computationally very efficient when compared to other reconstruction techniques.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 49
Permanent link to this record
 

 
Author (down) Miguel Oliveira; Vítor Santos; Angel D. Sappa; Paulo Dias; A. Paulo Moreira
Title Incremental Texture Mapping for Autonomous Driving Type Journal Article
Year 2016 Publication Robotics and Autonomous Systems Journal Abbreviated Journal
Volume Vol. 84 Issue Pages pp. 113-128
Keywords Scene reconstruction, Autonomous driving, Texture mapping
Abstract Autonomous vehicles have a large number of on-board sensors, not only for providing coverage all around the vehicle, but also to ensure multi-modality in the observation of the scene. Because of this, it is not trivial to come up with a single, unique representation that feeds from the data given by all these sensors. We propose an algorithm which is capable of mapping texture collected from vision based sensors onto a geometric description of the scenario constructed from data provided by 3D sensors. The algorithm uses a constrained Delaunay triangulation to produce a mesh which is updated using a specially devised sequence of operations. These enforce a partial configuration of the mesh that avoids bad quality textures and ensures that there are no gaps in the texture. Results show that this algorithm is capable of producing fine quality textures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 50
Permanent link to this record
 

 
Author (down) Miguel Oliveira; Vítor Santos; Angel D. Sappa; Paulo Dias
Title Scene representations for autonomous driving: an approach based on polygonal primitives Type Conference Article
Year 2015 Publication Iberian Robotics Conference (ROBOT 2015), Lisbon, Portugal, 2015 Abbreviated Journal
Volume 417 Issue Pages 503-515
Keywords Scene reconstruction, Point cloud, Autonomous vehicles
Abstract In this paper, we present a novel methodology to compute a 3D scene representation. The algorithm uses macro scale polygonal primitives to model the scene. This means that the representation of the scene is given as a list of large scale polygons that describe the geometric structure of the environment. Results show that the approach is capable of producing accurate descriptions of the scene. In addition, the algorithm is very efficient when compared to other techniques.
Address
Corporate Author Thesis
Publisher Springer International Publishing Switzerland 2016 Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Second Iberian Robotics Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 45
Permanent link to this record
 

 
Author (down) Miguel A. Murillo, Julio E. Alvia, & Miguel Realpe
Title Beyond visual and radio line of sight UAVs monitoring system through open software in a simulated environment. Type Conference Article
Year 2021 Publication The 2nd International Conference on Applied Technologies (ICAT 2020), diciembre 2-4. Communications in Computer and Information Science Abbreviated Journal
Volume 1388 Issue Pages 629-642
Keywords Drone, Open Source, Internet, Web Application, Web Server, SITL, Line of sight, UAV.
Abstract The problem of loss of line of sight when operating drones has be-come a reality with adverse effects for professional and amateur drone opera-tors, since it brings technical problems such as loss of data collected by the de-vice in one or more instants of time during the flight and even misunderstand-ings of legal nature when the drone flies over prohibited or private places. This paper describes the implementation of a drone monitoring system using the In-ternet as a long-range communication network in order to avoid the problem of loss of communication between the ground station and the device. For this, a simulated environment is used through an appropriate open software tool. The operation of the system is based on a client that makes requests to a server, the latter in turn communicates with several servers, each of which has a drone connected to it. In the proposed system when a drone is ready to start a flight, its server informs the main server of the system, which in turn gives feedback to the client informing it that the device is ready to carry out the flight; this way customers can send a mission to the device and keep track of its progress in real time on the screen of their web application.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 186
Permanent link to this record
 

 
Author (down) Michael Teutsch, Angel Sappa & Riad Hammoud
Title Computer Vision in the Infrared Spectrum: Challenges and ApproachesComputer Vision in the Infrared Spectrum: Challenges and Approaches Type Journal Article
Year 2021 Publication Synthesis Lectures on Computer Vision Abbreviated Journal
Volume Vol. 10 No. 2 Issue Pages pp. 138
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 166
Permanent link to this record