Home | << 1 2 3 4 5 6 7 8 9 10 >> [11–17] |
![]() |
Records | |||||
---|---|---|---|---|---|
Author | Ma. Paz Velarde; Erika Perugachi; Dennis G. Romero; Ángel D. Sappa; Boris X. Vintimilla | ||||
Title | Análisis del movimiento de las extremidades superiores aplicado a la rehabilitación física de una persona usando técnicas de visión artificial. | Type | Journal Article | ||
Year | 2015 | Publication | Revista Tecnológica ESPOL-RTE | Abbreviated Journal | |
Volume | 28 | Issue | Pages | 1-7 | |
Keywords | Rehabilitation; RGB-D Sensor; Computer Vision; Upper limb | ||||
Abstract ![]() |
Comúnmente durante la rehabilitación física, el diagnóstico dado por el especialista se basa en observaciones cualitativas que sugieren, en algunos casos, conclusiones subjetivas. El presente trabajo propone un enfoque cuantitativo, orientado a servir de ayuda a fisioterapeutas, a través de una herramienta interactiva y de bajo costo que permite medir los movimientos de miembros superiores. Estos movimientos son capturados por un sensor RGB-D y procesados mediante la metodología propuesta, dando como resultado una eficiente representación de movimientos, permitiendo la evaluación cuantitativa de movimientos de los miembros superiores. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | ESPOL | Place of Publication | Editor | ||
Language | English | Summary Language | English | Original Title | |
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | cidis @ cidis @ | Serial | 39 | ||
Permanent link to this record | |||||
Author | Marjorie Chalen; Boris X. Vintimilla | ||||
Title | Towards Action Prediction Applying Deep Learning | Type | Journal Article | ||
Year | 2019 | Publication | Latin American Conference on Computational Intelligence (LA-CCI); Guayaquil, Ecuador; 11-15 Noviembre 2019 | Abbreviated Journal | |
Volume | Issue | Pages | |||
Keywords | action prediction, early recognition, early detec- tion, action anticipation, cnn, deep learning, rnn, lstm. | ||||
Abstract ![]() |
Considering the incremental development future action prediction by video analysis task of computer vision where it is done based upon incomplete action executions. Deep learning is playing an important role in this task framework. Thus, this paper describes recently techniques and pertinent datasets utilized in human action prediction task. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | cidis @ cidis @ | Serial | 129 | ||
Permanent link to this record | |||||
Author | Cristhian A. Aguilera, Cristhian Aguilera, Cristóbal A. Navarro, & Angel D. Sappa | ||||
Title | Fast CNN Stereo Depth Estimation through Embedded GPU Devices | Type | Journal Article | ||
Year | 2020 | Publication | Sensors 2020 | Abbreviated Journal | |
Volume | Vol. 2020-June | Issue | 11 | Pages | pp. 1-13 |
Keywords | stereo matching; deep learning; embedded GPU | ||||
Abstract ![]() |
Current CNN-based stereo depth estimation models can barely run under real-time constraints on embedded graphic processing unit (GPU) devices. Moreover, state-of-the-art evaluations usually do not consider model optimization techniques, being that it is unknown what is the current potential on embedded GPU devices. In this work, we evaluate two state-of-the-art models on three different embedded GPU devices, with and without optimization methods, presenting performance results that illustrate the actual capabilities of embedded GPU devices for stereo depth estimation. More importantly, based on our evaluation, we propose the use of a U-Net like architecture for postprocessing the cost-volume, instead of a typical sequence of 3D convolutions, drastically augmenting the runtime speed of current models. In our experiments, we achieve real-time inference speed, in the range of 5–32 ms, for 1216 368 input stereo images on the Jetson TX2, Jetson Xavier, and Jetson Nano embedded devices. |
||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | English | Summary Language | English | Original Title | |
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | 14248220 | ISBN | Medium | ||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | cidis @ cidis @ | Serial | 132 | ||
Permanent link to this record | |||||
Author | Luis Jacome-Galarza, Monica Villavicencio-Cabezas, Miguel Realpe-Robalino, Jose Benavides-Maldonado | ||||
Title | Software Engineering and Distributed Computing in image processing intelligent systems: a systematic literature review. | Type | Conference Article | ||
Year | 2021 | Publication | 19th LACCEI International Multi-Conference for Engineering, Education, and Technology | Abbreviated Journal | |
Volume | Issue | Pages | |||
Keywords | processing, software engineering, deep learning, intelligent vision systems, cloud computing. | ||||
Abstract ![]() |
Deep learning is experiencing an upward technology trend that is revolutionizing intelligent systems in several domains, such as image and speech recognition, machine translation, social network filtering, and the like. By reviewing a total of 80 studies reported from 2016 to 2020, the present article evaluates the application of software engineering to the field of intelligent image processing systems, it also offers insights about aspects related to distributed computing for this type of systems. Results indicate that several topics of software engineering are mostly applied when academics are involved in developing projects associated to this kind of intelligent systems. The findings provide evidences that Apache Spark is the most utilized distributed computing framework for image processing. In addition, Tensorflow is a popular framework used to build convolutional neural networks, which are the prevailing deep learning algorithms used in intelligent image processing systems. Also, among big cloud providers, Amazon Web Services is the preferred computing platform across the industry sectors, followed by Google cloud. |
||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | English | Summary Language | Original Title | ||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | cidis @ cidis @ | Serial | 154 | ||
Permanent link to this record | |||||
Author | Miguel Realpe; Boris X. Vintimilla; Ljubo Vlacic | ||||
Title | Multi-sensor Fusion Module in a Fault Tolerant Perception System for Autonomous Vehicles | Type | Journal Article | ||
Year | 2016 | Publication | Journal of Automation and Control Engineering (JOACE) | Abbreviated Journal | |
Volume | 4 | Issue | Pages | 430-436 | |
Keywords | Fault Tolerance, Data Fusion, Multi-sensor Fusion, Autonomous Vehicles, Perception System | ||||
Abstract ![]() |
Driverless vehicles are currently being tested on public roads in order to examine their ability to perform in a safe and reliable way in real world situations. However, the long-term reliable operation of a vehicle’s diverse sensors and the effects of potential sensor faults in the vehicle system have not been tested yet. This paper is proposing a sensor fusion architecture that minimizes the influence of a sensor fault. Experimental results are presented simulating faults by introducing displacements in the sensor information from the KITTI dataset. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | English | Summary Language | English | Original Title | |
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | cidis @ cidis @ | Serial | 51 | ||
Permanent link to this record | |||||
Author | Miguel Realpe; Boris X. Vintimilla; Ljubo Vlacic | ||||
Title | A Fault Tolerant Perception system for autonomous vehicles | Type | Conference Article | ||
Year | 2016 | Publication | 35th Chinese Control Conference (CCC2016), International Conference on, Chengdu | Abbreviated Journal | |
Volume | Issue | Pages | 1-6 | ||
Keywords | Fault Tolerant Perception, Sensor Data Fusion, Fault Tolerance, Autonomous Vehicles, Federated Architecture | ||||
Abstract ![]() |
Driverless vehicles are currently being tested on public roads in order to examine their ability to perform in a safe and reliable way in real world situations. However, the long-term reliable operation of a vehicle’s diverse sensors and the effects of potential sensor faults in the vehicle system have not been tested yet. This paper is proposing a sensor fusion architecture that minimizes the influence of a sensor fault. Experimental results are presented simulating faults by introducing displacements in the sensor information from the KITTI dataset. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | English | Summary Language | English | Original Title | |
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | cidis @ cidis @ | Serial | 52 | ||
Permanent link to this record | |||||
Author | Rafael E. Rivadeneira; Patricia L. Suarez; Angel D. Sappa; Boris X. Vintimilla. | ||||
Title | Thermal Image SuperResolution through Deep Convolutional Neural Network. | Type | Conference Article | ||
Year | 2019 | Publication | 16th International Conference on Image Analysis and Recognition (ICIAR 2019); Waterloo, Canadá | Abbreviated Journal | |
Volume | Issue | Pages | |||
Keywords | |||||
Abstract ![]() |
Due to the lack of thermal image datasets, a new dataset has been acquired for proposed a superesolution approach using a Deep Convolution Neural Network schema. In order to achieve this image enhancement process a new thermal images dataset is used. Di?erent experiments have been carried out, ?rstly, the proposed architecture has been trained using only images of the visible spectrum, and later it has been trained with images of the thermal spectrum, the results showed that with the network trained with thermal images, better results are obtained in the process of enhancing the images, maintaining the image details and perspective. The thermal dataset is available at http://www.cidis.espol.edu.ec/es/dataset | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | gtsi @ user @ | Serial | 103 | ||
Permanent link to this record | |||||
Author | Ortiz J.; Londono J.; Novillo F.; Ampuno A.; Chávez M. | ||||
Title | Determinación de Invariantes en Grandes Centros de Datos basados en Topología Fat-Tree | Type | Journal Article | ||
Year | 2015 | Publication | Revista Politécnica | Abbreviated Journal | |
Volume | 35 | Issue | Pages | 91-96 | |
Keywords | Invariantes de red, topologías, Fat-tree, simulación, emulación | ||||
Abstract ![]() |
Durante los últimos años ha existido un fuerte incremento en el acceso a internet, causando que los centros de datos ( DC) deban adaptar dinámicamente su infraestructura de red de cara a enfrentar posibles problemas de congestión, la cual no siempre se da de forma oportuna. Ante esto, nuevas topologías de red se han propuesto en los últimos años, como una forma de brindar mejores condiciones para el manejo de tráfico interno, sin embargo es común que para el estudio de estas mejoras, se necesite recrear el comportamiento de un verdadero DC en modelos de simulación/emulación. Por lo tanto se vuelve esencial validar dichos modelos, de cara a obtener resultados coherentes con la realidad. Esta validación es posible por medio de la identificación de ciertas propiedades que se deducen a partir de las variables y los parámetros que describen la red, y que se mantienen en las topologías de los DC para diversos escenarios y/o configuraciones. Estas propiedades, conocidas como invariantes, son una expresión del funcionamiento de la red en ambientes reales, como por ejemplo la ruta más larga entre dos nodos o el número de enlaces mínimo que deben fallar antes de una pérdida de conectividad en alguno de los nodos de la red. En el presente trabajo se realiza la identificación, formulación y comprobación de dos invariantes para la topología Fat-Tree, utilizando como software emulador a mininet. Las conclusiones muestran resultados concordantes entre lo analítico y lo práctico. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Escuela Politécnica Nacional | Place of Publication | Editor | ||
Language | Español | Summary Language | Español | Original Title | |
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | cidis @ cidis @ | Serial | 32 | ||
Permanent link to this record | |||||
Author | Dennis G. Romero; Anselmo Frizera N.; Teodiano Freire B. | ||||
Title | Reconocimiento en-l?nea de acciones humanas basado en patrones de RWE aplicado en ventanas dinámicas de momentos invariantes | Type | Journal Article | ||
Year | 2014 | Publication | Revista Iberoamericana de Automática e Informática industrial 00 (2014) | Abbreviated Journal | |
Volume | 11 | Issue | Pages | 202-211 | |
Keywords | Vision por ordenador, Mapas de profundidad, Reconocimiento de acciones humanas, Relative Wavelet Energy, Distancia de ´ Mahalanobis | ||||
Abstract ![]() |
Durante los últimos años ha existido un fuerte incremento en el acceso a internet, causando que los centros de datos (DC) deban adaptar dinámicamente su infraestructura de red de cara a enfrentar posibles problemas de congestión, la cual no siempre se da de forma oportuna. Ante esto, nuevas topologías de red se han propuesto en los últimos años, como una forma de brindar mejores condiciones para el manejo de tráfico interno, sin embargo es común que para el estudio de estas mejoras, se necesite recrear el comportamiento de un verdadero DC en modelos de simulación/emulación. Por lo tanto se vuelve esencial validar dichos modelos, de cara a obtener resultados coherentes con la realidad. Esta validación es posible por medio de la identificación de ciertas propiedades que se deducen a partir de las variables y los parámetros que describen la red, y que se mantienen en las topologías de los DC para diversos escenarios y/o configuraciones. Estas propiedades, conocidas como invariantes, son una expresión del funcionamiento de la red en ambientes reales, como por ejemplo la ruta más larga entre dos nodos o el número de enlaces mínimo que deben fallar antes de una pérdida de conectividad en alguno de los nodos de la red. En el presente trabajo se realiza la identificación, formulación y comprobación de dos invariantes para la topología Fat-Tree, utilizando como software emulador a mininet. Las conclusiones muestran resultados concordantes entre lo analítico y lo práctico. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Español | Summary Language | Español | Original Title | |
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | cidis @ cidis @ | Serial | 30 | ||
Permanent link to this record | |||||
Author | Dennys Paillacho; F. Novillo; W. Agila.; V. Huilcapi | ||||
Title | Impacto de las redes de comunicaciones en los Sistemas Robóticos de Control | Type | Journal Article | ||
Year | 2015 | Publication | Revista Politécnica | Abbreviated Journal | |
Volume | 35 | Issue | Pages | 97-102 | |
Keywords | Ethernet, CAN, Swichted Ethernet, Sistemas de control en red, Ciclo de comunicación, Control de ajuste de trayectoria | ||||
Abstract ![]() |
El análisis de incidencia que tienen las redes de comunicaciones sobre el comportamiento de los sistemas robóticos de control en red muestra grandes dificultades cuando se quieren hacer evaluaciones de tipo analítico. Por tal razón, en este trabajo un análisis que utiliza una aproximación basada en simulación es propuesto, de manera que el comportamiento temporal y espacial de un sistema robótico de control en red pueda ser evaluado. Para tal efecto, se propone un entorno de validación mediante el cual una red de comunicaciones permita distribuir mensajes de control entre el controlador principal y los controladores remotos ubicados en cada articulación angular del robot manipulador planar. Las interacciones entre los componentes del sistema han sido modeladas mediante un sistema de capas. Dicho modelo es llevado a un entorno de simulación con la finalidad de analizar el impacto de distintos parámetros de comunicaciones (i.e. tipo de red, tasa de datos y tamaño de datos) sobre el ciclo de comunicación y el error de seguimiento de trayectoria en un sistema robótico. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Escuela Politécnica Nacional | Place of Publication | Editor | ||
Language | Español | Summary Language | Español | Original Title | |
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | cidis @ cidis @ | Serial | 33 | ||
Permanent link to this record |