toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Jacome-Galarza L.-R., Realpe Robalino M.-A., Paillacho Corredores J., Benavides Maldonado J.-L. url  openurl
  Title Time series in sensor data using state of the art deep learning approaches: A systematic literature review. Type Conference Article
  Year (down) 2022 Publication VII International Conference on Science, Technology and Innovation for Society (CITIS 2021), mayo 26-28.  Smart Innovation, Systems and Technologies. (Vol. 252, pp. 503-514) Abbreviated Journal  
  Volume Issue Pages  
  Keywords time series, deep learning, recurrent networks, sensor data, IoT.  
  Abstract IoT (Internet of Things) and AI (Artificial Intelligence) are becoming

support tools for several current technological solutions due to significant advancements of these areas. The development of the IoT in various technological fields has contributed to predicting the behavior of various systems such as mechanical, electronic, and control using sensor networks. On the other hand, deep learning architectures have achieved excellent results in complex tasks, where patterns have been extracted in time series. This study has reviewed the most efficient deep learning architectures for forecasting and obtaining trends over time, together with data produced by IoT sensors. In this way, it is proposed to contribute to applications in fields in which IoT is contributing a technological advance such as smart cities, industry 4.0, sustainable agriculture, or robotics. Among the architectures studied in this article related to the process of time series data we have: LSTM (Long Short-Term Memory) for its high precision in prediction and the ability to automatically process input sequences; CNN (Convolutional Neural Networks) mainly in human activity

recognition; hybrid architectures in which there is a convolutional layer for data pre-processing and RNN (Recurrent Neural Networks) for data fusion from different sensors and their subsequent classification; and stacked LSTM Autoencoders that extract the variables from time series in an unsupervised way without the need of manual data pre-processing.Finally, well-known technologies in natural language processing are also used in time series data prediction, such as the attention mechanism and embeddings obtaining promising results.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number cidis @ cidis @ Serial 152  
Permanent link to this record
 

 
Author Jacome-Galarza L.-R pdf  openurl
  Title Crop yield prediction utilizing multimodal deep learning Type Conference Article
  Year (down) 2021 Publication 16th Iberian Conference on Information Systems and Technologies, CISTI 2021, junio 23 – 26, 2021 Abbreviated Journal  
  Volume Issue Pages  
  Keywords Agricultura de precisión; sensores remotos; aprendizaje profundo multimodal; IoT; agentes inteligentes; computación aplicada.  
  Abstract La agricultura de precisión es una práctica vital para

mejorar la producción de cosechas. El presente trabajo tiene

como objetivo desarrollar un modelo multimodal de aprendizaje

profundo que es capaz de producir un mapa de salud de

cosechas. El modelo recibe como entradas imágenes multiespectrales

y datos de sensores de campo (humedad,

temperatura, estado del suelo, etc.) y crea un mapa de

rendimiento de la cosecha. La utilización de datos multimodales

tiene como finalidad extraer patrones ocultos del estado de salud

de las cosechas y de esta manera obtener mejores resultados que

los obtenidos mediante los índices de vegetación.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Español Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number cidis @ cidis @ Serial 150  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: