|   | 
Details
   web
Records
Author Marta Diaz; Dennys Paillacho; Cecilio Angulo
Title Evaluating Group-Robot Interaction in Crowded Public Spaces: A Week-Long Exploratory Study in the Wild with a Humanoid Robot Guiding Visitors Through a Science Museum. Type Journal Article
Year 2015 Publication International Journal of Humanoid Robotics Abbreviated Journal
Volume Vol. 12 Issue Pages
Keywords Group-robot interaction; robotic-guide; social navigation; space management; spatial formations; group walking behavior; crowd behavior
Abstract (up) This paper describes an exploratory study on group interaction with a robot-guide in an open large-scale busy environment. For an entire week a humanoid robot was deployed in the popular Cosmocaixa Science Museum in Barcelona and guided hundreds of people through the museum facilities. The main goal of this experience is to study in the wild the episodes of the robot guiding visitors to a requested destination focusing on the group behavior during displacement. The walking behavior follow-me and the face to face communication in a populated environment are analyzed in terms of guide- visitors interaction, grouping patterns and spatial formations. Results from observational data show that the space configurations spontaneously formed by the robot guide and visitors walking together did not always meet the robot communicative and navigational requirements for successful guidance. Therefore additional verbal and nonverbal prompts must be considered to regulate effectively the walking together and follow-me behaviors. Finally, we discuss lessons learned and recommendations for robot’s spatial behavior in dense crowded scenarios.
Address
Corporate Author Thesis
Publisher International Journal of Humanoid Robotics Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number cidis @ cidis @ Serial 34
Permanent link to this record
 

 
Author Sebastián Fuenzalida; Keyla Toapanta; Jonathan S. Paillacho Corredores; Dennys Paillacho
Title Forward and Inverse Kinematics of a Humanoid Robot Head for Social Human Robot-Interaction Type Conference Article
Year 2019 Publication IEEE ETCM 2019 Fourth Ecuador Technical Chapters Meeting; Guayaquil, Ecuador Abbreviated Journal
Volume Issue Pages
Keywords
Abstract (up) This paper presents an analysis of forward and inverse kinematics for a humanoid robotic head. The robotic head is used for the study of social human-robot interaction, such as a support tool to maintain the attention of patients with Autism Spectrum Disorder. The design of a parallel robot that emulates human head movements through a closed structure is presented. The position and orientation in this space is controlled by three servomotors. For this, the solutions made for the kinematic problem are encompassed by a geometric analysis of a mobile base. This article describes a non-systematic method,

called the geometric method, and compares some of the most popular existing methods considering reliability and computational cost. The geometric method avoids the use of changing reference systems, and instead uses geometric

relationships to directly obtain the position based on joint variables; and the other way around. Therefore, it converges in a few iterations and has a low computational cost.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number gtsi @ user @ Serial 113
Permanent link to this record
 

 
Author Jorge Alvarez Tello; Mireya Zapata; Dennys Paillacho
Title Kinematic optimization of a robot head movements for the evaluation of human-robot interaction in social robotics. Type Conference Article
Year 2019 Publication 10th International Conference on Applied Human Factors and Ergonomics and the Affiliated Conferences (AHFE 2019), Washington D.C.; United States. Advances in Intelligent Systems and Computing Abbreviated Journal
Volume 975 Issue Pages 108-118
Keywords
Abstract (up) This paper presents the simplification of the head movements from

the analysis of the biomechanical parameters of the head and neck at the

mechanical and structural level through CAD modeling and construction with

additive printing in ABS/PLA to implement non-verbal communication strategies and establish behavior patterns in the social interaction. This is using in the

denominated MASHI (Multipurpose Assistant robot for Social Human-robot

Interaction) experimental robotic telepresence platform, implemented by a

display with a fish-eye camera along with the mechanical mechanism, which

permits 4 degrees of freedom (DoF). In the development of mathematicalmechanical modeling for the kinematics codification that governs the robot and

the autonomy of movement, we have the Pitch, Roll, and Yaw movements, and

the combination of all of them to establish an active communication through

telepresence. For the computational implementation, it will be show the rotational matrix to describe the movement.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number gtsi @ user @ Serial 108
Permanent link to this record