Home | << 1 2 3 4 5 >> |
![]() |
Records | |||||
---|---|---|---|---|---|
Author | Ricaurte P; Chilán C; Cristhian A. Aguilera; Boris X. Vintimilla; Angel D. Sappa | ||||
Title | Feature Point Descriptors: Infrared and Visible Spectra | Type | Journal Article | ||
Year | 2014 | Publication | Sensors Journal | Abbreviated Journal | |
Volume | Vol. 14 | Issue | Pages ![]() |
pp. 3690-3701 | |
Keywords | cross-spectral imaging; feature point descriptors | ||||
Abstract | This manuscript evaluates the behavior of classical feature point descriptors when they are used in images from long-wave infrared spectral band and compare them with the results obtained in the visible spectrum. Robustness to changes in rotation, scaling, blur, and additive noise are analyzed using a state of the art framework. Experimental results using a cross-spectral outdoor image data set are presented and conclusions from these experiments are given. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | English | Summary Language | English | Original Title | |
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | cidis @ cidis @ | Serial | 28 | ||
Permanent link to this record | |||||
Author | Patricia L. Suárez, Angel D. Sappa, Boris X. Vintimilla | ||||
Title | Cycle generative adversarial network: towards a low-cost vegetation index estimation | Type | Conference Article | ||
Year | 2021 | Publication | IEEE International Conference on Image Processing (ICIP 2021) | Abbreviated Journal | |
Volume | 2021-September | Issue | Pages ![]() |
2783-2787 | |
Keywords | CyclicGAN, NDVI, near infrared spectra, instance normalization. | ||||
Abstract | This paper presents a novel unsupervised approach to estimate the Normalized Difference Vegetation Index (NDVI).The NDVI is obtained as the ratio between information from the visible and near infrared spectral bands; in the current work, the NDVI is estimated just from an image of the visible spectrum through a Cyclic Generative Adversarial Network (CyclicGAN). This unsupervised architecture learns to estimate the NDVI index by means of an image translation between the red channel of a given RGB image and the NDVI unpaired index’s image. The translation is obtained by means of a ResNET architecture and a multiple loss function. Experimental results obtained with this unsupervised scheme show the validity of the implemented model. Additionally, comparisons with the state of the art approaches are provided showing improvements with the proposed approach. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | cidis @ cidis @ | Serial | 164 | ||
Permanent link to this record | |||||
Author | Patricia L. Suarez; Angel D. Sappa; Boris X. Vintimilla; Riad I. Hammoud | ||||
Title | Near InfraRed Imagery Colorization | Type | Conference Article | ||
Year | 2018 | Publication | 25 th IEEE International Conference on Image Processing, ICIP 2018 | Abbreviated Journal | |
Volume | Issue | Pages ![]() |
2237-2241 | ||
Keywords | |||||
Abstract | This paper proposes a stacked conditional Generative Adversarial Network-based method for Near InfraRed (NIR) imagery colorization. We propose a variant architecture of Generative Adversarial Network (GAN) that uses multiple loss functions over a conditional probabilistic generative model. We show that this new architecture/loss-function yields better generalization and representation of the generated colored IR images. The proposed approach is evaluated on a large test dataset and compared to recent state of the art methods using standard metrics.1 Index Terms—Convolutional Neural Networks (CNN), Generative Adversarial Network (GAN), Infrared Imagery colorization. |
||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | gtsi @ user @ | Serial | 81 | ||
Permanent link to this record | |||||
Author | Patricia L. Suarez; Angel D. Sappa; Boris X. Vintimilla; Riad I. Hammoud | ||||
Title | Image Vegetation Index through a Cycle Generative Adversarial Network | Type | Conference Article | ||
Year | 2019 | Publication | Conference on Computer Vision and Pattern Recognition Workshops (CVPR 2019); Long Beach, California, United States | Abbreviated Journal | |
Volume | Issue | Pages ![]() |
1014-1021 | ||
Keywords | |||||
Abstract | This paper proposes a novel approach to estimate the Normalized Difference Vegetation Index (NDVI) just from an RGB image. The NDVI values are obtained by using images from the visible spectral band together with a synthetic near infrared image obtained by a cycled GAN. The cycled GAN network is able to obtain a NIR image from a given gray scale image. It is trained by using unpaired set of gray scale and NIR images by using a U-net architecture and a multiple loss function (gray scale images are obtained from the provided RGB images). Then, the NIR image estimated with the proposed cycle generative adversarial network is used to compute the NDVI index. Experimental results are provided showing the validity of the proposed approach. Additionally, comparisons with previous approaches are also provided. |
||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | gtsi @ user @ | Serial | 106 | ||
Permanent link to this record | |||||
Author | Jorge L. Charco, Angel D. Sappa, Boris X. Vintimilla | ||||
Title | Human Pose Estimation through A Novel Multi-View Scheme | Type | Conference Article | ||
Year | 2022 | Publication | 17th International Conference on Computer Vision Theory and Applications (VISAPP 2022), febrero 6-8 | Abbreviated Journal | |
Volume | Issue | Pages ![]() |
855-862 | ||
Keywords | Multi-View Scheme, Human Pose Estimation, Relative Camera Pose, Monocular Approach | ||||
Abstract | This paper presents a multi-view scheme to tackle the challenging problem of the self-occlusion in human pose estimation problem. The proposed approach first obtains the human body joints of a set of images, which are captured from different views at the same time. Then, it enhances the obtained joints by using a multi-view scheme. Basically, the joints from a given view are used to enhance poorly estimated joints from another view, especially intended to tackle the self occlusions cases. A network architecture initially proposed for the monocular case is adapted to be used in the proposed multi-view scheme. Experimental results and comparisons with the state-of-the-art approaches on Human3.6m dataset are presented showing improvements in the accuracy of body joints estimations. |
||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | yes | |||
Call Number | cidis @ cidis @ | Serial | 169 | ||
Permanent link to this record | |||||
Author | Julien Poujol; Cristhian A. Aguilera; Etienne Danos; Boris X. Vintimilla; Ricardo Toledo; Angel D. Sappa | ||||
Title | A visible-Thermal Fusion based Monocular Visual Odometry | Type | Conference Article | ||
Year | 2015 | Publication | Iberian Robotics Conference (ROBOT 2015), International Conference on, Lisbon, Portugal, 2015 | Abbreviated Journal | |
Volume | 417 | Issue | Pages ![]() |
517-528 | |
Keywords | Monocular Visual Odometry; LWIR-RGB cross-spectral Imaging; Image Fusion | ||||
Abstract | The manuscript evaluates the performance of a monocular visual odometry approach when images from different spectra are considered, both independently and fused. The objective behind this evaluation is to analyze if classical approaches can be improved when the given images, which are from different spectra, are fused and represented in new domains. The images in these new domains should have some of the following properties: i) more robust to noisy data; ii) less sensitive to changes (e.g., lighting); iii) more rich in descriptive information, among other. In particular in the current work two different image fusion strategies are considered. Firstly, images from the visible and thermal spectrum are fused using a Discrete Wavelet Transform (DWT) approach. Secondly, a monochrome threshold strategy is considered. The obtained representations are evaluated under a visual odometry framework, highlighting their advantages and disadvantages, using different urban and semi-urban scenarios. Comparisons with both monocular-visible spectrum and monocular-infrared spectrum, are also provided showing the validity of the proposed approach. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | English | Summary Language | English | Original Title | |
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | cidis @ cidis @ | Serial | 44 | ||
Permanent link to this record | |||||
Author | Patricia L. Suarez; Angel D. Sappa; Boris X. Vintimilla | ||||
Title | Image patch similarity through a meta-learning metric based approach | Type | Conference Article | ||
Year | 2019 | Publication | 15th International Conference on Signal Image Technology & Internet based Systems (SITIS 2019); Sorrento, Italia | Abbreviated Journal | |
Volume | Issue | Pages ![]() |
511-517 | ||
Keywords | |||||
Abstract | Comparing images regions are one of the core methods used on computer vision for tasks like image classification, scene understanding, object detection and recognition. Hence, this paper proposes a novel approach to determine similarity of image regions (patches), in order to obtain the best representation of image patches. This problem has been studied by many researchers presenting different approaches, however, the ability to find the better criteria to measure the similarity on image regions are still a challenge. The present work tackles this problem using a few-shot metric based meta-learning framework able to compare image regions and determining a similarity measure to decide if there is similarity between the compared patches. Our model is training end-to-end from scratch. Experimental results have shown that the proposed approach effectively estimates the similarity of the patches and, comparing it with the state of the art approaches, shows better results. |
||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | gtsi @ user @ | Serial | 115 | ||
Permanent link to this record | |||||
Author | Jorge L. Charco; Angel D. Sappa; Boris X. Vintimilla; Henry O. Velesaca | ||||
Title | Transfer Learning from Synthetic Data in the Camera Pose Estimation Problem | Type | Conference Article | ||
Year | 2020 | Publication | The 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2020); Valletta, Malta; 27-29 Febrero 2020 | Abbreviated Journal | |
Volume | 4 | Issue | Pages ![]() |
498-505 | |
Keywords | Relative Camera Pose Estimation, Siamese Architecture, Synthetic Data, Deep Learning, Multi-View Environments, Extrinsic Camera Parameters. | ||||
Abstract | This paper presents a novel Siamese network architecture, as a variant of Resnet-50, to estimate the relative camera pose on multi-view environments. In order to improve the performance of the proposed model a transfer learning strategy, based on synthetic images obtained from a virtual-world, is considered. The transfer learning consist of first training the network using pairs of images from the virtual-world scenario considering different conditions (i.e., weather, illumination, objects, buildings, etc.); then, the learned weight of the network are transferred to the real case, where images from real-world scenarios are considered. Experimental results and comparisons with the state of the art show both, improvements on the relative pose estimation accuracy using the proposed model, as well as further improvements when the transfer learning strategy (synthetic-world data – transfer learning – real-world data) is considered to tackle the limitation on the training due to the reduced number of pairs of real-images on most of the public data sets. |
||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | 978-989758402-2 | Medium | ||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | gtsi @ user @ | Serial | 120 | ||
Permanent link to this record | |||||
Author | Rafael E. Rivadeneira; Angel D. Sappa; Boris X. Vintimilla; Lin Guo; Jiankun Hou; Armin Mehri; Parichehr Behjati; Ardakani Heena Patel; Vishal Chudasama; Kalpesh Prajapati; Kishor P. Upla; Raghavendra Ramachandra; Kiran Raja; Christoph Busch; Feras Almasri; Olivier Debeir; Sabari Nathan; Priya Kansal; Nolan Gutierrez; Bardia Mojra; William J. Beksi | ||||
Title | Thermal Image Super-Resolution Challenge – PBVS 2020 | Type | Conference Article | ||
Year | 2020 | Publication | The 16th IEEE Workshop on Perception Beyond the Visible Spectrum on the Conference on Computer Vision and Pattern Recongnition (CVPR 2020) | Abbreviated Journal | |
Volume | 2020-June | Issue | 9151059 | Pages ![]() |
432-439 |
Keywords | |||||
Abstract | This paper summarizes the top contributions to the first challenge on thermal image super-resolution (TISR) which was organized as part of the Perception Beyond the Visible Spectrum (PBVS) 2020 workshop. In this challenge, a novel thermal image dataset is considered together with stateof-the-art approaches evaluated under a common framework. The dataset used in the challenge consists of 1021 thermal images, obtained from three distinct thermal cameras at different resolutions (low-resolution, mid-resolution, and high-resolution), resulting in a total of 3063 thermal images. From each resolution, 951 images are used for training and 50 for testing while the 20 remaining images are used for two proposed evaluations. The first evaluation consists of downsampling the low-resolution, midresolution, and high-resolution thermal images by x2, x3 and x4 respectively, and comparing their super-resolution results with the corresponding ground truth images. The second evaluation is comprised of obtaining the x2 superresolution from a given mid-resolution thermal image and comparing it with the corresponding semi-registered highresolution thermal image. Out of 51 registered participants, 6 teams reached the final validation phase. |
||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | English | Summary Language | Original Title | ||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | 21607508 | ISBN | 978-172819360-1 | Medium | |
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | cidis @ cidis @ | Serial | 123 | ||
Permanent link to this record | |||||
Author | Miguel Realpe; Boris X. Vintimilla; Ljubo Vlacic | ||||
Title | Multi-sensor Fusion Module in a Fault Tolerant Perception System for Autonomous Vehicles | Type | Journal Article | ||
Year | 2016 | Publication | Journal of Automation and Control Engineering (JOACE) | Abbreviated Journal | |
Volume | Vol. 4 | Issue | Pages ![]() |
pp. 430-436 | |
Keywords | Fault Tolerance, Data Fusion, Multi-sensor Fusion, Autonomous Vehicles, Perception System | ||||
Abstract | Driverless vehicles are currently being tested on public roads in order to examine their ability to perform in a safe and reliable way in real world situations. However, the long-term reliable operation of a vehicle’s diverse sensors and the effects of potential sensor faults in the vehicle system have not been tested yet. This paper is proposing a sensor fusion architecture that minimizes the influence of a sensor fault. Experimental results are presented simulating faults by introducing displacements in the sensor information from the KITTI dataset. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | English | Summary Language | English | Original Title | |
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | cidis @ cidis @ | Serial | 51 | ||
Permanent link to this record |