®

Check for
updates

Autonomous Intelligent Navigation for
Mobile Robots in Closed Environments

Steven Silva Mendoza!®) | Dennys F. Paillacho Chiluiza?, David Soque Leén?,
Marfa Guerra Pintado?, and Jonathan S. Paillacho Corredores?

! Facultad de Ingenierfa en Mecanica y Ciencias de la Produccién - FIMCP,
ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL,
Campus Gustavo Galindo, P.O. Box 09 -01 -5863, Guayaquil, Ecuador
sasilva@espol.edu.ec
2 Facultad de Ingenierfa en Electricidad y Computacién - FIEC, CIDIS,
ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL,
Campus Gustavo Galindo, P.O. Box 09 -01 -5863, Guayaquil, Ecuador
{dpaillac,disoque,magaguer, jspailla}@espol.edu.ec

Abstract. Providing a map is mandatory for Autonomous Mobile
Robots to be able to complete localization and navigation tasks, known
as SLAM. Several SLAM algorithms which provides different quality
maps have been proposed before but still issues related to map qual-
ity can appear while for accurate navigation high mapping performance
is desired, therefore to be used in areas regarding health care through
delivery and indoor control. For that reason, although several SLAM
methods are available, the one provided by Cartographer ROS has been
chosen for being one of the most recent, updated ones and has been taken
into test with respect to the map quality provided. To accomplish that
objective, the implementation of a simulation and experimental environ-
ment have been constructed in order to contrast between both mapping,
localization and navigation results by using Turtlebot3 and Arlo Paral-
lax platforms including LiDar and encoder sensors, with which the map
created by the simulation would be the most optimum map as possi-
ble. As a result by using an RPLiDar Al, an acceptable map from the
experimental procedure related to the optimized one was acquired. With
which could be concluded that Cartographer ROS algorithm is satisfac-
tory to be used for intelligent autonomous navigation purposes by pro-
viding high fidelity and effective maps even while demanding affordable
computational power.

Keywords: Autonomous mobile robots + Cartographer ROS -
Robotics operating system - MicroPython - ESP32 - Social navigation

1 Introduction

Several packages, navigation stacks and solution for AMR! have been proposed
throughout both previous decade, some of them have been left outdated while

1 Autonomous Mobile Robots.

© Springer Nature Switzerland AG 2021
M. Botto-Tobar et al. (Eds.): ICAT 2020, CCIS 1388, pp. 391-402, 2021.
https://doi.org/10.1007/978-3-030-71503-8_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71503-8_30&domain=pdf
https://doi.org/10.1007/978-3-030-71503-8_30

392 S. S. Mendoza et al.

some of them updated continuously. An AMR corresponds to any platform that
is aware of its environment and able to navigate through without colliding and
finding the right trajectory for different coordinates goals without having to be
overseen directly by a operator. Since it is needed for the AMR to recognize its
environment, certain resources are requested by it regarding surrounding space
features. These features which correspond to a map, distance array structures,
and encoder values have its own quality or accuracy, from which one of the
most important is a well made map. In the current project, only 2D Mapping is
considered [15].

In the case of ROS?, a map can be created by using different SLAM? algo-
rithms and techniques like Gmapping, Hector SLAM and RTAB, each giving a
different approach of a map solution but not a definitive one to be used with-
out question. However not too many years ago Cartographer, a Google project
which is a system that provides real-time SLAM in 2D and 3D across multiple
platforms and sensor configurations was ported to ROS [6]. While seeking for
one of the most optimum methods of creating a map using ROS and then use
it for autonomous navigation, it was stated as an objective to test one of the
SLAM methods. From the ones we researched, found Cartographer ROS to be
one of the best and most promising ones, since it uses a global map optimization
cycle and local probabilistic map updates which makes the system more robust
to changes in the environment [2]. Having in mind that what is most important
is to be able to create the map of the space experimentally, it was proposed to
analyze Cartographer ROS experimental performance comparing it with simula-
tion, considering the last one as the most precise results. In order to accomplish
that, an experimental and simulated environment was needed and in both cases
a 2D map were gotten with which navigation was tested.

With a definite algorithm or SLAM package with which a map can be con-
structed, it could enable easier AMRs implementation for indoor environments
a good navigation results that conclude in solutions of automation uses for hos-
pitals, restaurant attention, etc.

2 State of Art

Nowadays there are several SLAM methods and every of them are a different
approach of a solution for autonomous navigation, some of them are dependent
of some sensors like depth cameras, others might be dependent of what is called
laser scan provided by a LiDar. There are many of these SLAM packages that
have been with time outdated or left without any optimization. In the case of
Cartographer ROS, it looks to be a well optimized and promising method to
be used with other components like Move Base*. As a stack which is updated
continuously. In terms of the results of other SLAM methods, it provides a

2 Robotics Operating System [3].

3 Simultaneous Localization and Mapping.

4 A package provides an implementation of an action (see the actionlib package) that,
given a goal in the world, will attempt to reach it with a mobile base [9].

AMR in Closed Environments 393

really good algorithm in which the map that is given by it is updated by the
use of submaps when it is still running, making it a real-time SLAM package
capable of providing effective mapping results, as seen in other investigations and
categorized as one of the most accurate [1]. In Fig. 1, it can be seen Cartographer

Node structure.
/robot_state_publisher

[car —node /submap_list /cartographer_occupancy_grid_node

/scan_matched._points2

[trajectory_node_list

Nlandmark_poses._list

/horizontal_laser_2d

Iplaybag

Fig. 1. Cartographer node for 2D SLAM [6].

In order to evaluate the efficiency or quality of the map, there are qualitative
and quantitative ways to do it. If quantitative evaluation is requested, GT® data
coming from simulation needs to be provided as well as the odometry from the
trajectory gotten in the experimental proves, with which RMSE error can be
calculated between both results as well as absolute and relative pose error [16].

Indirectly the efficiency of movement of a robot is affected by how good the
map and the trajectory that in terms of ROS is here is accomplished with AMCL
and Move Base. Nowadays there are already some software packages capable of
this kind of analysis, one of them is a python module called EVO, a python
package which can give several insight about the quality of a trajectory [4].

Qualitative analysis on the other hand can also be accomplished even of it is
not as reliable as a quantitative method, and actually in the current project the
maps are only analyzed in a qualitative way. One of them, corresponds to the
proportion of the map, the blurrier the walls or outline of the map, the worst it
is, meaning a well made map should be pretty sharp, as seen in Fig. 2.

Also, another one is the amount of corners the map has, a map with a huge
amount of corners is most likely to be inconsistent unless the ones shown are
actual corners. This is also related to the amount of enclosed areas, the most
enclosed areas the map has, means the map is could fail for navigation in the
future since the AMR shouldn’t be enclosed in only one single space, taking as
enclosed area a space in which the robot is surrounded completely by occupied
cells. Mostly it is important to do the analysis with the before stated parameters
when no ground truth is available and it is important to consider that these
parameters can also be affected because of bad data sensing like odometry which
could cause map shifting, for example when turning [8,11].

5 Ground Truth: corresponds to the most precise trajectory or odometry recording of
the robot or moving platform.

https://github.com/MichaelGrupp/evo

394 S. S. Mendoza et al.

Fig. 2. A map with different proportions [1].

3 Methodology

The project was carried out in two parts; for the first part a simulation with
which mapping was made using a simulated environment in Gazebo and a second
part in which the same technique was implemented in the commercial ArloBot
platform.

For the complete project, a repository in GitLab was established as
amr-navegacion. Also, in order to accomplish lots of part related to the con-
figuration of the project, an urdf defining the ArloBot platform [7] and a wiki
about Cartographer ROS with Ouster LiDar [12] were used as resources.

3.1 Simulation

Mapping Environment Setup. A navigation scene was recreated, specifically
the interior of a house, trying to add details of significant size such as walls,
pillars, furniture doors, dining table and chairs; by using Onshape, CAD software
for collaborative drawing, supporting 3D design. Subsequently, it was necessary
to carry out a conversion of the final assembly of the drawing from stl to sdf,
which is one of the extensions that Gazebo handles in the software used by
ROS to simulate scenarios and the interaction of the robot with it. In order
to accomplish that conversion, Onshape to Robot was used. Once the stage is
exported into the gazebo as a model, the settings are made to select this model as
the world of our simulated robot. The resulting simulated environment exported
with Onshape to Robot from Onshape can be seen in Figs. 3 and 4, according
to the experimental one in Fig. 5.

https://gitlab.com/dpailla/amr/-/tree/navegacion
https://www.onshape.com/
https://github.com/Rhoban/onshape-to-robot

AMR in Closed Environments 395

waw 1

Fig. 3. Superior view of the simulated environment.

Cartographer and Robot Setup. The installation of the Cartographer ROS
project was made in the workspace intended for both simulated tests and imple-
mentation. The necessary steps to follow are indicated in the GitLab repository.

Afterwards, Turtlebot3 was used as the simulated robot for the simulation.
Since there wasn’t a package in order to simulate ArloBot in gazebo, Tutlebot3
Burguer was considered for the purpose since it was the most similar to ArloBot.

Also other packages like differential drive, move_base and rplidarR0S
were installed in the workspace in order to provide the data with defined mes-
sages type that Cartographer Node requests.

Launch and Config Files. In order to start the mapping, different launch
files were created in which every needed node for the simulation was included.
In between these is the gazebo spawn node, rviz, move base and amcl. Also
.lua configuration files were stated to have the best result from cartographer.
All the last components were needed in order to recreate, visualize, move and
localize the AMR in simulation and experimental procedures [5,10].

396 S. S. Mendoza et al.

Fig. 4. Recreated experimental environment.

The structure defined in Fig. 6 was the one used in order to define all the
project regarding the simulation. It was using Draw. Io including every pack-
age and middleware needed in order for the simulation to work properly. It is
worth saying that red arrows correspond to Publishers and green arrows to
Subscribers.

AMR in Closed Environments 397

Fig. 5. Experimental physical environment.

Ubuntu 18.04

ROS Melodic

Sensors

LiDar }» --

publish scan subscribe Gartographer e map Neeon. :
........ > (sensor_msgs/LaserScan) /€= Node (nav_msgs/OccupancyGrid) :
- | ;
i z
odom v scan_matched_points2 l
turtlebot3_core 2 (e ey < [7 (sensor_msgs/PointCloud2) ‘—{ vz

-

N submap_list e- H
(cartographer_ros_msgs/SubmaplList) H

Fig. 6. Simulation architecture.

3.2 Experimental

For the experimental part, most of the launch and configuration files were copy
pasted since ROS lets to use almost the same file and packages structure for
simulation and experimental practices. However, it is still important to point

398 S. S. Mendoza et al.

out as defined Fig. 7, where other packages needed to be included in order to let
the interaction with hardware happen.

ESP32 and MicroPython Setup. The most significant difference between the
simulated and experimental part, is that in the experimental one it is needed to
program a microcontroller to communicate with ROS master in order to provide
information about certain sensors like encoders but also control the platform, in
this case, the driver for the motors which is a DHB-10.

The ESP32 was used for this task for being a really robust and efficient
microcontroller. In regard to MicroPython, it was used to rely on only one pro-
gramming language since ROS is also mostly used with Python and additionally
because it is a fairly easy language to use. In order to establish communica-
tion with ROS from the microcontroller, rosserial was proposed, with which
uros® was used. And to control the DHB-10 driver a module called uPyArlo”
was installed as well, which would let encoder readings and speed commands
writings.

= a

P coLoa roS P - Cartographer\ map
iDar > iDar » Y =" <
Node. nav_msgs/OccupancyGrid)
(sensor_msgs/LaserScan) . (nav_msg: ipancyGrid) Pt S T
subscribe :
‘tﬂ »differential-drive > foay, ms“‘;‘f&we‘) H scan_matched_points2
_msgs ") * (sensor_msgs/PointCloud2)
RVIZ
[Foftwers SLAM

Cartographer submap_list
ROS Melod Y | DR
Plataforma v
del 5
Arlo Robot rosserial

Motores DG

Fig. 7. Experimental architecture

4 Results and Discussion

4.1 Simulation

The resulting map obtained from simulation environment can be seen in Fig. 8. It
was obtained by using map_saver command from the package map_server after

5 A MicroPython module developed to be used with rosserial [14].
7 A MicroPython module developed to control DC motors through DHB-10 driver
[13].

https://github.com/FunPythonEC/uPy-rosserial
https://github.com/FunPythonEC/uPyArlo

AMR in Closed Environments 399

going through the mapping process. Looking at its outline it is a fairly good
result of a map. Considering the width of the walls in the map, corresponding to
proportion, they show to be pretty thin, well defined and sharp, which is a good
sign and helps with the accuracy of a good navigation. Some parts of the outline
show to have certain anomalies in the outer part of the map, but they shouldn’t
affect the navigation since the robot can’t actually go through that area.

Now considering the amount of corners presented in the map, there are almost
none of them, the corners that are presented are mostly because the environment
is actually cornered, they are really well closed and defined sufficiently. It is
worth considering that some spaces were left opened because the laser from the
LiDar couldn’t go in such small spaces, which is then limited by hardware and
not the SLAM algorithm. These opened areas should be left opened however in
the current testing it is almost impossible to accomplish that matter since it is
mostly a matter of how the environment was defined, for example, to not have
those opened areas, the sofas from the environment should be put as close as
possible to the walls.

In regard to the enclosed areas, it also shows a good sign, no enclosed areas are
presented and the platform is able to go through all the map without restrictions.
That is because the map doesn’t show any shifting anomaly in any way. It could
be said that it represents a perfect map in the context of others maps resulting
from other SLAM techniques.

el L5

R
[

I

SN

Fig. 8. Map obtained from simulated environment.

400 S. S. Mendoza et al.

4.2 Experimental

In the case of Fig. 9, exported by using map_server as well, the first thing to
take into account is that the map is not actually aligned with the simulated one,
which is basically because of how the AMR started the mapping process. Now
in terms of proportion, it is clearly that the experimental map is not as good as
in the simulation, there are certain parts of it that not that neat and perfectly
defined. Some of the causes could be the colors and certain disturbances from
the walls, like irregular surfaces. Other than that, is shows a good sign since
either way the width of the outline is thin. It should also be considered, that in
this case a real LiDar was used which has a lot more errors and less accuracy
than a simulated one and still the proportion of the outline is satisfying enough.

Fig. 9. Map obtained from experimental environment.

AMR in Closed Environments 401

Regarding the amount of corners, this map has more corners than Fig. 8,
but it does not reduces the quality of the map significantly because there aren’t
too much of them. Most of them can be spotted in the outline of the walls,
where little spikes are shown. Also the actual corners from the environment
were mapped and are shown convincing.

Related to the enclosed areas, none were created, as it can be seen from
the map, it is completely open and the AMR can drive freely through it as
in the simulated one. Although the map fulfills the parameters for a qualitative
analysis, it has some anomalies that should be pointed out. One of them is at the
inferior part, there seems to be an open part in which the map is not complete,
that error is because at that area a complete window replacing a wall is placed
which wasn’t sensed by the LiDar leading to an open section. Another one can
also bee seen at the right part, where unoccupied cells as a wide line outside
the outline is shown, an error caused because of little open edges in between the
door. Apart from that, the map is accurate and comparable to the simulated
one, the edges and irregularities it were caused because of the hardware used
and some differences between the simulated and experimental environment.

5 Conclusion

Both simulated and experimental results for mapping by the use of Cartographer
ROS were shown and while analyzing the maps provided by qualitative methods,
it could be concluded that Cartographer ROS is able to provide a really well made
maps even when using not the most expensive hardware resources and that the
efficiency doesn’t vary significantly in between the simulation and experimental
procedures. While using a RPLiDar A1 sensor, a considerably cheap LiDar, still
no much difference was seen considering that in simulation, the laser sensor
plugin from Gazebo is as accurate as possible, as well as in the best condition.

By looking at the results, it can easily be seen the maps are not of the same
quality, but that doesn’t mean the experimental solution can’t be used nor that
it can’t compete with the simulated results, actually it is a really satisfying
approach while the errors gotten are not enough to reduce its usefulness at all.

It is possible for the reason that this SLAM method works with submaps
made while it goes through the mapping process, it is able to update the current
published map and optimizing already mapped areas continuously with previous
Laser Scan data samples, and without using much CPU power. Meaning that
Cartographer ROS is one of the best approaches to be used when implementing
a SLAM technique in order to acquire autonomous navigation.

References

1. Anton, F., Artyom, F., Kirill, K.: 2D slam quality evaluation methods, August
2017

2. Filipenko, M., Afanasyev, I.: Comparison of various slam systems for mobile robot
in an indoor environment, August 2018

402

13.
14.
15.

16.

S. S. Mendoza et al.

Foundation, O.S.R.: Ros documentation. https://wiki.ros.org/

Grupp, M.: evo: Python package for the evaluation of odometry and slam (2017).
https://github.com/MichaelGrupp/evo

Hershberger, D., Gossow, D., Faust, J., Woodall, W.: Rviz. https://wiki.ros.org/
rviz

Hess, W., Kohler, D., Rapp, H., Andor, D.: Real-time loop closure in 2D lidar slam.
In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp.
1271-1278 (2016)

Lofland, C.: Arlobot. https://github.com/chrisl8/ArloBot

Longhi, R., Fabro, J.: Ros navigation: concepts and tutorial, February 2016
Marder-Eppstein, E.: Move base. https://wiki.ros.org/move_base
Marder-Eppstein, E.: Navigation. https://wiki.ros.org/navigation

Santos, J.M., Portugal, D., Rocha, R.P.: An evaluation of 2D slam techniques
available in robot operating system (2013)

. Selby, W.: Building maps using google cartographer and the osl lidar sensor. Tech-

nical report, October 2019. https://ouster.com/blog/building-maps-using-google-
cartographer-and-the-osl-lidar-sensor/

Silva, S.: Micropython arlorobot. https://github.com/FunPythonEC/uPyArlo
Silva, S.: Micropython rosserial. https://github.com/FunPythonEC/uPy-rosserial
Wonnacott, D.; Karhumaa, M., Walker, J.: Autonomous navigation planning with
ros

Yagfarov, R., Ivanou, M., Afanasyev, I.: Map comparison of lidar-based 2D slam
algorithms using precise ground truth, November 2018

https://wiki.ros.org/
https://github.com/MichaelGrupp/evo
https://wiki.ros.org/rviz
https://wiki.ros.org/rviz
https://github.com/chrisl8/ArloBot
https://wiki.ros.org/move_base
https://wiki.ros.org/navigation
https://ouster.com/blog/building-maps-using-google-cartographer-and-the-os1-lidar-sensor/
https://ouster.com/blog/building-maps-using-google-cartographer-and-the-os1-lidar-sensor/
https://github.com/FunPythonEC/uPyArlo
https://github.com/FunPythonEC/uPy-rosserial

	Autonomous Intelligent Navigation for Mobile Robots in Closed Environments
	1 Introduction
	2 State of Art
	3 Methodology
	3.1 Simulation
	3.2 Experimental

	4 Results and Discussion
	4.1 Simulation
	4.2 Experimental

	5 Conclusion
	References

