
An Empirical Comparison of DCNN libraries to implement
the Vision Module of a Danger Management System

Sianna Puente C. Cindy Madrid Miguel Realpe Boris X. Vintimilla
Escuela Superior Politécnica del Litoral, ESPOL, CIDIS – FIEC

Campus Gustavo Galindo Km 30.5 Vía Perimetral, Guayaquil, Ecuador
[sppuente, cemadrid, mrealpe, boris.vintimilla] @espol.edu.ec

ABSTRACT

In this paper we discuss the feasibility of using a DCNN to
implement Fall and Head detection for a Danger Management
System. For this propose, AlexNet and Inception-v3 models in
MatConvNet and TensorFlow libraries were used for training new
DCNNs with Fine-Tuning method. Additionally, a new public
dataset was created, which includes diverse fall poses, as well as,
top views of people walking in a scene.

CCS Concepts
• Computing methodologies➝Machine learning➝Machine
learning approaches➝Neural networks.

Keywords
DCNN, Fall detection; Head detection; Tensorflow; Matconvnet;
Danger Management Systems.

1. INTRODUCTION
Kishwar is an ongoing project which main goal is to develop a
Danger Management Systems that will offer automated alarm
management, supervision and control in order to secure the safety
of people during emergency situations, especially those requiring
building evacuation (e.g. fire disasters, hazardous material release,
earthquakes, etc.). The Danger Management System needs to be
able of reactively guiding people during emergency situations, in
addition of detecting obstacles and fallen people near exits in
order to change escape routes depending of the real-time
conditions of the emergency and the building structure. Also, the
system will provide information about the origin and state of the
emergency with the intention of creating a better assessment of
the current situation and possible rescue procedures.

The full Kishwar system (Figure 1) includes a sensor network that
incorporates sensors such as video cameras, fire detectors and gas
leak detectors for monitoring the current state of a building.
However, the focus of the present work is to develop a computer
vision system to detect people near exits, as well as, to identify the
untoward event of a fallen person that may need some assistance
or might represent some risk in case of evacuation. One important
requirement of the system is real-time processing capability;
likewise, the implemented solution should be not only accurate,
but also fast. Thus, this paper compares the detection accuracy
and the processing speed of two state-of-the-art Deep

Convolutional Neural Networks (DCNN) libraries in order to
choose the best option for the Kishwar’s Vision Module.

A literature review is given in the next section of this paper. After
that, the dataset generation and the training process are explained.
Then, experimental results are shown. Finally, the last section
depicts the conclusions and future works.

Figure 1. Kishwar’s modules.

2. RELATED WORK
People detection is a key problem for many computer vision tasks
and has been a widely studied problem in the past decades for
many applications, such as recognition of human activity, security
and pedestrian avoidance [1]. The basic human detection process
consists of classifying patterns in the image into a specific class
(usually, human or not human). A general pattern classification is
posed as follows: Given a training sample S, consisting of n
independent observations, the problem is to find a decision
function that classifies new objects as accurately as possible. For
that, many feature extraction and classification methods have been
proposed. Some systems are based on simple features, for
example Viola and Jones [2] propose a combination of several
Haar-like filters such as lines and edges, which provide a decent
performance and a low computation cost, but a high false alarm
rate. In 2005, Dalal and Triggs [3] introduced the histograms of
oriented gradients (HOG) feature for this pedestrians detection,
which later was used by Felzenswalb et al. [4] in the deformable
part model DPM, as well as, improved the detection performance
and encouraged the use of complex features, such as skeleton and
silhouette based ones [5, 6], these features have a good

performance but a high computational cost that makes them
unsuitable for real time applications.

In 2012 Krizhevsky [26] proposed a DCNN that improved the
state-of-the-art accuracy of image traditional classification
methods [8]. Afterwards, its specific network structure has
become an increasingly popular tool in computer vision [9]. In
addition to their high accuracy, the DCNNs have the ability of
unsupervised feature learning. Because of that, these networks are
used for the detection of objects [10], faces, people, heads [11]
and fallen people [12], among other applications.

In the Kishwar project, the amount of people that enter and leave
the building needs to be estimated. Many approaches have been
proposed for detecting people in order to count them, the most
popular are body detection [13], shoulder detection [14], head
detection [11], and combinations of these. Nevertheless, head
detection is the least affected by occlusions, especially in crowded
situations and images acquired from a high point (above the
average human height).

In [15] a CNN was implemented for head detection. The Neural
Networks was used for features extraction, and then a SVM with
Adaboost was applied for classification. Afterward, the results
were compared with a HOG feature extraction algorithm. The
CNNs provided better Correct Detection Rates (CDRs) but slower
computing time.

In addition of counting people, the system has to include a
detector for fallen people. The goal of fall detection is the
subsequent implementation of monitoring systems with alert
sending, most of the related works are focused on the analysis of
fall detection for patients and elderly people in environments as
homes and hospitals. In [16], recognition of lying poses in
individual images is performed by analysing configurations of
body parts such as limbs in regions detected by means of a
structured tree model. Some works use information from
sequences of video frames in order to perform tracking of an
individual and human shape analysis. In [17], the silhouette of a
person is extracted to analyse the human shape in order to
differentiate a fall from some other activity, by comparing the
changes in the orientation with defined thresholds. The complex
nature of human motion makes thresholds less effective in
detecting different kind of falls; thresholds are sensitive due to
noisy trajectories or poor image segmentation, machine learning
approaches are more appropriate to generalize detection of these
fall poses. In [18] a feature vector is obtained by means of
traditional techniques and a motions’ classification is made by
using a multi-class Support Vector Machine to determine a fall
event, ten different poses are considered, three of them are
forward, backward and sideway fall. In lateral views, there are
usually more problems due to occlusion of objects. Deep learning
approach attracts a lot of attention recently; DCNNs can be very
efficient for pose recognition since there is no need to explicitly
design feature representations and detectors for parts because they
are learned directly from the data [19]. Previous works focused on
differentiating between fall poses and ADLs (Activities of Daily
Living), for example walking, standing, sitting, crouching,
climbing or climbing stairs.

Since the cameras of the Kishwar project will be located in a high
position near the exits, we have decided to apply head detection
for counting people, in addition of a detector of fall poses
performed on individual images of a simple scene acquired from a
top view angle. Also, we chose DCNNs for classification, because
on their accuracy. For the implementation we have compared two

state-of-the-art DCNNs libraries in order to define the best option
for the Kishwar’s Vision Module based on their detection
accuracy and processing speed.

3. PROPOSED APPROACH
As stated in the previous sections, DCNNs were selected for
implementing the Kishwar’s Vision Module (Fallen Person
Detection and Head Detection) because they produce better CDRs
than classic Machine Learning methods. We also decided to
compare two different DCNNs libraries -i.e., TensorFlow and
MatConvnet (section 3.2) - with a specific dataset in order to find
the one with the best results for the project. Therefore, our next
step was to define a dataset robust enough for our purpose.

Since top view images are needed for the training process, the use
of popular pedestrians’ dataset such as INRIA [3], Caltech-USA
[20], and KITTI [21] were discarded because they do not offer the
desire camera angle. Instead, we explored three top view people
datasets: Edinburgh Informatics Forum Pedestrian Database [22],
Top View Person Re-Identification Dataset (TVPR) [23] and UR
Fall Detection Dataset [24]. The former is a dataset focused on
people tracking, but it does not include enough raw data for
training a neural network for people detection. The second one
includes stereovision images of diverse people walking in the
cameras’ FOV, however no fall poses are provided and the latter
provides fallen people frames but fall poses images are still very
scarce. Due to this lack of a suitable training data, a new dataset
that includes people walking and fall poses was created.

3.1 Dataset Generation1
The dataset was generated from videos recorded using a Basler
acA1300 camera at 75 fps in top-view configuration (Figure 2).
The videos were acquired in 4 sessions during varied days/times.
Each session produced around of 10 videos, which include one or
two people walking at the same time under the camera, obstacles
in the environment and people simulating four different fall
categories (face up, face down, on side, slip).

From these videos, 14.614 images were originally obtained (Table
1). Additionally, some transformations such as Gaussian noise,
salt and pepper, and rotations were applied in order to increase the
diversity and robustness of the dataset. As result, 146.124 images
of 640x360 pixels were created. Some examples are shown in
Figures 3-5.

Figure 2: Top-view configuration for the dataset generation

1 The whole set of images used for training and validation, as well as the

obtained results, will be shared together with the proposed CNN's
models.

Table 1: Original number of images obtained for each
category

Category Subcategory N° Images

 Head
Head 3.662
No Head 4.352

 Fall

Fall1 1.114
Fall2 800
Fall3 1.077
Fall4 1.135

Floor 2.019
Obstacle 455

TOTAL 14.614

3.2 DCNNs Training
The Fine-Tuning method has been applied in order to train the
DCNNs. The idea of Fine-Tuning is that a pre-trained model will
act as a feature extractor (until the next-to-last layer), then the last
layer is trained for a new classification model. In this research,
AlexNet and Inception-v3 models in MatConvNet and
TensorFlow libraries were used for training new models with
diverse images selected from the dataset (Table 2).

Three approaches were used for training the data: Head
classification using TensorFlow, Fall classification using
MatConvNet and classification comparison of libraries (for heads
and falls). The next sections explain the libraries and training
processes.

Figure 3: Images of scene with person walking, obstacles and

floor.

Figure 4: Images of fall poses, head, and no head.

Figure 5: Original image with transformations

Table 2: Number of images used for DCNNs training

Model Category N° Images

Head
Head 3.453
No Head 4.250

Fall

Fall1 1.047
Fall2 790
Fall3 1.077
Fall4 307
Floor 455
Obstacle 425
Walk 1.007

3.2.1 TensorFlow training
TensorFlow is an open source software library for numerical
computation using data flow graphs. Nodes in the graph represent
mathematical operations, while the graph edges represent the
multidimensional data arrays (tensors) communicated between
them. The flexible architecture allows processing the data in one
or more CPUs or GPUs in a desktop, server, or mobile device
with a single API.

TensorFlow has good design considerations for neural network
training, and at the same time avoids being totally a neural
network framework. It includes graph collections, queues, image
augmenters etc., which can be useful building blocks for a higher-
level wrapper.

It was decided to use TensorFlow for head classification by
applying the Fine-Tuning technique in the DCNN training. The
available models in the TensorFlow library are: CIFAR10 and
Inception-v3, however Inception-v3 is the only model that allows
fine-tuning so far, which was chosen. Inception-v3 is really a
great architecture and it is the result of multiple trial and error
cycles, it often achieves the best performance for image
recognition among other models.

Training with TensorFlow was performed on a Microsoft AZURE
server with the following features: UBUNTU 16 Operating
System, Intel Xeon R E5-2673 v3 (Haswell) processor, 4GB
RAM and 500GB Hard Disk. Although TensorFlow has received
a lot of attention for being a very promising framework, it
currently only supports cuDNNv3 version and not the cuDNNv7.5
that was installed on the computer during the training processing.

All networks were trained with the same parameters, 10,000
training steps, 10% of data for testing and 10% of data for
validation; values defined by recommendation in tutorials of the
TensorFlow official page.

3.2.2 MatConvNet training
MatConvNet is a toolbox for the Convolutional Neural Networks
implementation in the Matlab environment. MatConvNet allows
easy manipulation of the DCNNs architecture by means of
building blocks, it provides a variety of optimizations by
supporting GPU calculations and a flexible use of existing models
for Fine-Tuning application [25].

The implementation of this technique was performed with the pre-
trained DCNN model AlexNet, which is one of the most popular
models used in the field of DCNNs and winner of the ILSVRC-
2012 challenge. In [26] its architecture is described, this network
is composed of eight learned layers, five convolutional layers,

max-pooling layers, dropout layers, and three fully connected
layers, it was designed for classification of 1000 categories. In this
existing model, the last fully-connected layer was replaced with
random weights and new categories to be classified were
specified, then dropout layers were added between the fully
connected layers in order to avoid over-fitting. The "dropout"
technique consists of randomly deactivating connections of
neurons during the training process to avoid the dependence of a
neuron with other particular neurons.

Before the procedure, the train and test sets were prepared with
images of the proposed categories and respective labels were
defined. A re-training of the network was then performed with the
new dataset available. This approach indicates that the entire
network were trained, but with better initialization of weights
(first layers) and not random values, which would help make the
learning of the network much faster and more effective.

The training was performed in Matlab 2016b with MatconvNet
1.0-beta20 version compiled for GPU on a computer with
NVIDIA Quadro K2200 video card.

4. EXPERIMENTAL RESULTS
The accuracy was estimated based on the average of the
Sensitivity or True Positive Rate (TPR) and the Specificity or
True Negative Rate (TNR).

 𝑇𝑃𝑅 = 𝑇𝑃

𝑇𝑃+𝐹𝑁
 (1)

𝑇𝑁𝑅 =

𝑇𝑁

𝑇𝑁+𝐹𝑃
 (2)

Table 3 and 4 show the result of the DCNN training processes
using diverse amount of images randomly selected. The validation
accuracy is estimated employing the same images used for
training, while the test accuracy uses different images.
In order to assess the performance of the DCNNs trained for fall
detection, 3400 images were tested (1730 falls and 1670 notfall).
Similarly, 3700 test images were used for evaluating the head
detection CNNs (1650 head and 2050 nohead). In both cases,
image sets included original images and images after
transformations were applied.

Table 3: Test results for Fall detection DCNN.

N°
Images

Validation
Accuracy TPR TNR Test

Accuracy
1.500 99,07% 97,93 % 82,45% 90,19%
2.500 99,52% 97,75 % 87,80% 92,77%
3.500 99,26% 98,91 % 88,28% 93,60%
4.500 99,29% 98,73 % 87,98% 93,35%
18.700 99,26% 97,98 % 94,94% 96,46%
49.500 99,51% 98,33 % 94,46% 96,40%

Table 4: Test results for Head detection DCNN.

N° Validation TPR TNR Test
Images Accuracy Accuracy
2.906 97,80% 96,29 % 83,72% 90,00%
4.906 96,00% 96,05 % 85,04% 90,56%
6.906 97,60% 95,38 % 79,65% 88,76%
34.872 95,60% 96,05 % 94,33% 95,19%
58.872 96,40% 97,21 % 93,56% 95,38%
82.872 96,20% 96,68 % 93,41% 95,04%

In order to analyse the influence of transformations introduced
into the dataset, the DCNNs were also trained using sets of images
with and without transformations (1700 and 18700 images
respectively) for 2 and 4 categories. These results are shown in
Tables 5 and 6.

Table 5: Test results for Fall detection DCNN with and
without transformation using 2 categories.

Transforma
tions

Validation
Accuracy

Fall
(%)

Not Fall
(%)

Test
Accuracy

no 99,64% 97,12 82,90 90,01%
yes 99,26% 97,98 94,94 96,46%

Table 6: Test results for Fall detection DCNN with and

without transformation using 4 categories.

Transfor
mations

Validation
Accuracy

Fall
(%)

Floor
(%)

Obst.
(%)

Walk
(%)

Test
Accuracy

no 96,11% 86,82 95,05 85,85 86,50 88,55%
yes 96,37% 97,64 97,53 80,72 93,65 92,39%

4.1 Tensorflow vs Matconvnet
A new random set of 41000 images were used in order to
compare the models of both libraries, based on the results of
Table 3 and 4. These tests were realised in a Core i3 PC with
6GB RAM. The average processing time for each test image
was 153.16 ms for Matconvnet and 0.022 ms for TensorFlow.
Table 7 and 8 depict the results of both libraries trained for Head
and Fall detection respectively.

Table 7: Libraries’ results for Head detection.

Library Val TPR TNR Test
Accuracy Accuracy

Tensorflow 96,00% 95,83% 93,65% 94,74
Matconvnet 99,42% 99,58% 75,82% 87,7

Table 8: Libraries’ results for Fall detection.

Library Val TPR TNR Test
Accuracy Accuracy

Tensorflow 98,00% 99,02% 98,21% 98,61
Matconvnet 99,88% 99,45% 93,02% 96,24

5. CONCLUSIONS AND FUTURE WORKS
The introduction of transformations into the original dataset
increased the test accuracy of the DCNNs. In the case of 2
categories' DCNNs the accuracy increased 6%, while 4
categories’ DCNNs increased around 3%. It could be appreciated
that fall classification produce the lowest detection rates for
obstacles, since many of the images in this categories were
misclassified as background images with no people (floor)
because they both share a lot of common characteristics. On the
other hand, the category with the best accuracy was 'fall' because
it has less overlapping with the other classes.

When comparing TensorFlow and Matconvnet results, it can be
seen that TensorFlow produced the best result for Head detection
and Fall detection with 94.74% and 98.61% accuracy,
respectively. In addition, TensorFlow processing time (0.022 ms)
allows real time application of the system, which is one
requirement for Kishwar's vision module.

We are currently in the process of acquiring a larger dataset from
4 different top view perspectives of a scene (2 pair of parallel
cameras), which will serve as the basis for new training data with
a diverse combination of images. This dataset could also take
advantage of the parallel arrange in order to create deep images
that could provide more information for the classification process.
Also, multiple people in the same scene will be introduced in the
future dataset.

Since current dataset only includes a maximum of 2 people at the
time, the system may suffer from occlusion for multiple moving
objects. In addition a tracking process may need to be introduced
in order to increase reliability for real scenarios.

6. ACKNOWLEDGMENTS
This work has been supported by the ESPOL under Project G4-
DI-2014 "Integrated system for emergency management using
sensor networks and reactive signaling" (Kishwar).

7. REFERENCES
[1] P. Turaga, R. Chellappa, V. Subrahmanian, and O.

Udrea, “Machine recognition of human activities: A
survey,” IEEE Transactions on Circuits and Systems for
Video Technology , vol. 18, pp. 1473 –1488, nov. 2008.

[2] P. Viola and M. Jones. Rapid object detection using a
boosted cascade of simple features. Computer Vision and
Pattern Recognition, 1:511–518, 2001.

[3] Dalal, N., Triggs, B. : Histograms of oriented gradients f
or human detection. In: Proc. of IEEE Conference on
Computer Vision and Pattern Recognition (2005) 886–
893

[4] Felzenszwalb, P., McAllester, D., Ramanan, D.: A
discriminatively trained, multiscale, deformable part
model. In: CVPR. (2008).

[5] Chen, Y.T.; Lin, Y.C.; Fang, W.H. A hybrid human fall
detection scheme. In Proceedings of the International
Conference on Image Processing, Hong Kong, China,
26–29 September 2010; pp. 3485–3488.

[6] Realpe, M., Vintimilla, B., Romero, D., Remagnino, P.
(2009). Análisis de comportamiento humano:
Metodologia para localización y seguimiento de personas
en secuencias de video. Conferencia Iberoamericana en
Sistemas, Cibernética e Informática.

[7] Yu, M.; Rhuma, A.; Naqvi, S.M.;Wang, L.; Chambers, J.
A posture recognition based fall detection system for
monitoring an elderly person in a smart home
environment. IEEE Trans. Inf. Technol. Biomed. 2012,
16, 1274–1286.

[8] D. Tomè, F. Monti, L. Baroffio, L. Bondi, M.
Tagliasacchi, S. Tubaro, Deep Convolutional Neural
Networks for pedestrian detection, Signal Processing:
Image Communication, Volume 47, September 2016,
Pages 482-489, ISSN 0923-5965,
http://dx.doi.org/10.1016/j.image.2016.05.007.

[9] X.G. Chen, “Pedestrian Detection with Deep
Convolutional Neural Network”, Computer Vision-

ACCV 2014 Workshops. Springer International
Publishing, (2014)

[10] Yang, F., Choi, W., Lin, Y.: Exploit all the layers: Fast
and accurate cnn object detector with scale dependent
pooling and cascaded rejection classifier, CVPR (2016)

[11] Van Oosterhout, T., Bakkes, S., Kröse, B.J.: Head
detection in stereo data for people counting and
segmentation. In: VISAPP. (2011) 620–625

[12] Niall McLaughlin, Jesus Martinez del Rincon, Paul
Miller; The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2016, pp. 1325-1334

[13] Ouyang, W., Wang, X.: Joint deep learning for
pedestrian detection. In: Proceedings of the IEEE
International Conference on Computer Vision. (2013)
2056-2063

[14] Wang, S., Zhang, J., Miao, Z.: A new edge feature for
head-shoulder detection. In: 2013 IEEE International
Conference on Image Processing, IEEE (2013)

[15] Gao, C., Li, P., Zhang, Y., Liu, J., Wang, L.: People
counting based on head detection combining adaboost
and cnn in crowded surveillance environment.
Neurocomputing (2016)

[16] Wang, S., Zabir, S., Leibe, B.: Lying pose recognition for
elderly fall detection. Robotics: Science and Systems VII
(2012) 345-353

[17] Rougier, C., Meunier, J., St-Arnaud, A., Rousseau, J.:
Robust video surveillance for fall detection based on
human shape deformation. IEEE Transactions on Circuits
and Systems for Video Technology 21 (2011) 611-622

[18] Foroughi, H., Rezvanian, A., Paziraee, A.: Robust fall
detection using human shape and multi-class support
vector machine. In: Computer Vision, Graphics & Image
Processing, 2008. ICVGIP'08. Sixth Indian Conference
on, IEEE (2008) 413-420

[19] Bearman, A., Dong, C.: Human pose estimation and
activity classication using convolutional neural networks.
CS231n Course Project Reports (2015)

[20] Dollar, P., Wojek, C., Schiele, B., Perona, P.: “Pedestrian
detection: A benchmark”. In: CVPR. (2009)

[21] Geiger, A., Lenz, P., Urtasun, R.: “Are we ready for
autonomous driving? the kitti vision benchmark suite”.
In: Conference on Computer Vision and
PatternRecognition (CVPR). (2012)

[22] B. Majecka, "Statistical models of pedestrian behaviour
in the Forum", MSc Dissertation, School of Informatics,
University of Edinburgh, 2009

[23] Liciotti, D., Paolanti, M., Frontoni, E., Mancini, A.,
Zingaretti, P. “Person Re-Identification Dataset with
RGB-D Camera in a Top-View Configuration”, Video
Analytics for Face, Face Expression Recognition, and
Audience Measurement, Springer, 2017.

[24] Kwolek, B., & Kepski, M. (2014). Human fall detection
on embedded platform using depth maps and wireless
accelerometer. Computer methods and programs in
biomedicine, 117(3), 489-501.

[25] Vedaldi, A., Lenc, K.: Matconvnet: Convolutional neural
networks for matlab. In: Proceedings of the 23rd ACM
international conference on Multimedia, ACM (2015)
689-692

[26] Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet
classification with deep convolutional neural networks.
In: Advances in neural information processing systems.
(2012) 1097-1105

