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ABSTRACT 

In this paper we discuss the feasibility of using a DCNN to 
implement Fall and Head detection for a Danger Management 
System. For this propose, AlexNet and Inception-v3 models in 
MatConvNet and TensorFlow libraries were used for training new 
DCNNs with Fine-Tuning method. Additionally, a new public 
dataset was created, which includes diverse fall poses, as well as, 
top views of people walking in a scene. 

CCS Concepts 
• Computing methodologies➝Machine learning➝Machine 
learning approaches➝Neural networks. 

Keywords 
DCNN, Fall detection; Head detection; Tensorflow; Matconvnet; 
Danger Management Systems. 

 

1. INTRODUCTION 
Kishwar is an ongoing project which main goal is to develop a 
Danger Management Systems that will offer automated alarm 
management, supervision and control in order to secure the safety 
of people during emergency situations, especially those requiring 
building evacuation (e.g. fire disasters, hazardous material release, 
earthquakes, etc.). The Danger Management System needs to be 
able of reactively guiding people during emergency situations, in 
addition of detecting obstacles and fallen people near exits in 
order to change escape routes depending of the real-time 
conditions of the emergency and the building structure. Also, the 
system will provide information about the origin and state of the 
emergency with the intention of creating a better assessment of 
the current situation and possible rescue procedures. 

The full Kishwar system (Figure 1) includes a sensor network that 
incorporates sensors such as video cameras, fire detectors and gas 
leak detectors for monitoring the current state of a building. 
However, the focus of the present work is to develop a computer 
vision system to detect people near exits, as well as, to identify the 
untoward event of a fallen person that may need some assistance 
or might represent some risk in case of evacuation. One important 
requirement of the system is real-time processing capability; 
likewise, the implemented solution should be not only accurate, 
but also fast. Thus, this paper compares the detection accuracy 
and the processing speed of two state-of-the-art Deep 

Convolutional Neural Networks (DCNN) libraries in order to 
choose the best option for the Kishwar’s Vision Module.  

A literature review is given in the next section of this paper. After 
that, the dataset generation and the training process are explained. 
Then, experimental results are shown. Finally, the last section 
depicts the conclusions and future works. 

 

Figure 1. Kishwar’s modules. 
 

2. RELATED WORK 
People detection is a key problem for many computer vision tasks 
and has been a widely studied problem in the past decades for 
many applications, such as recognition of human activity, security 
and pedestrian avoidance [1]. The basic human detection process 
consists of classifying patterns in the image into a specific class 
(usually, human or not human). A general pattern classification is 
posed as follows: Given a training sample S, consisting of n 
independent observations, the problem is to find a decision 
function that classifies new objects as accurately as possible. For 
that, many feature extraction and classification methods have been 
proposed. Some systems are based on simple features, for 
example Viola and Jones [2] propose a combination of several 
Haar-like filters such as lines and edges, which provide a decent 
performance and a low computation cost, but a high false alarm 
rate. In 2005, Dalal and Triggs [3] introduced the histograms of 
oriented gradients (HOG) feature for this pedestrians detection, 
which later was used by Felzenswalb et al. [4] in the deformable 
part model DPM, as well as, improved the detection performance 
and encouraged the use of complex features, such as skeleton and 
silhouette based ones [5, 6], these features have a good 



performance but a high computational cost that makes them 
unsuitable for real time applications. 

In 2012 Krizhevsky [26] proposed a DCNN that improved the 
state-of-the-art accuracy of image traditional classification 
methods [8]. Afterwards, its specific network structure has 
become an increasingly popular tool in computer vision [9]. In 
addition to their high accuracy, the DCNNs have the ability of 
unsupervised feature learning. Because of that, these networks are 
used for the detection of objects [10], faces, people, heads [11] 
and fallen people [12], among other applications. 

In the Kishwar project, the amount of people that enter and leave 
the building needs to be estimated. Many approaches have been 
proposed for detecting people in order to count them, the most 
popular are body detection [13], shoulder detection [14], head 
detection [11], and combinations of these. Nevertheless, head 
detection is the least affected by occlusions, especially in crowded 
situations and images acquired from a high point (above the 
average human height). 

In [15] a CNN was implemented for head detection. The Neural 
Networks was used for features extraction, and then a SVM with 
Adaboost was applied for classification. Afterward, the results 
were compared with a HOG feature extraction algorithm. The 
CNNs provided better Correct Detection Rates (CDRs) but slower 
computing time. 

In addition of counting people, the system has to include a 
detector for fallen people. The goal of fall detection is the 
subsequent implementation of monitoring systems with alert 
sending, most of the related works are focused on the analysis of 
fall detection for patients and elderly people in environments as 
homes and hospitals. In [16], recognition of lying poses in 
individual images is performed by analysing configurations of 
body parts such as limbs in regions detected by means of a 
structured tree model. Some works use information from 
sequences of video frames in order to perform tracking of an 
individual and human shape analysis. In [17], the silhouette of a 
person is extracted to analyse the human shape in order to 
differentiate a fall from some other activity, by comparing the 
changes in the orientation with defined thresholds. The complex 
nature of human motion makes thresholds less effective in 
detecting different kind of falls; thresholds are sensitive due to 
noisy trajectories or poor image segmentation, machine learning 
approaches are more appropriate to generalize detection of these 
fall poses. In [18] a feature vector is obtained by means of 
traditional techniques and a motions’ classification is made by 
using a multi-class Support Vector Machine to determine a fall 
event, ten different poses are considered, three of them are 
forward, backward and sideway fall. In lateral views, there are 
usually more problems due to occlusion of objects. Deep learning 
approach attracts a lot of attention recently; DCNNs can be very 
efficient for pose recognition since there is no need to explicitly 
design feature representations and detectors for parts because they 
are learned directly from the data [19]. Previous works focused on 
differentiating between fall poses and ADLs (Activities of Daily 
Living), for example walking, standing, sitting, crouching, 
climbing or climbing stairs. 

Since the cameras of the Kishwar project will be located in a high 
position near the exits, we have decided to apply head detection 
for counting people, in addition of a detector of fall poses 
performed on individual images of a simple scene acquired from a 
top view angle. Also, we chose DCNNs for classification, because 
on their accuracy. For the implementation we have compared two 

state-of-the-art DCNNs libraries in order to define the best option 
for the Kishwar’s Vision Module based on their detection 
accuracy and processing speed.  

 

3. PROPOSED APPROACH 
As stated in the previous sections, DCNNs were selected for 
implementing the Kishwar’s Vision Module (Fallen Person 
Detection and Head Detection) because they produce better CDRs 
than classic Machine Learning methods. We also decided to 
compare two different DCNNs libraries -i.e., TensorFlow and 
MatConvnet (section 3.2) - with a specific dataset in order to find 
the one with the best results for the project. Therefore, our next 
step was to define a dataset robust enough for our purpose. 

Since top view images are needed for the training process, the use 
of popular pedestrians’ dataset such as INRIA [3], Caltech-USA 
[20], and KITTI [21] were discarded because they do not offer the 
desire camera angle. Instead, we explored three top view people 
datasets: Edinburgh Informatics Forum Pedestrian Database [22], 
Top View Person Re-Identification Dataset (TVPR) [23] and UR 
Fall Detection Dataset [24]. The former is a dataset focused on 
people tracking, but it does not include enough raw data for 
training a neural network for people detection. The second one 
includes stereovision images of diverse people walking in the 
cameras’ FOV, however no fall poses are provided and the latter 
provides fallen people frames but fall poses images are still very 
scarce. Due to this lack of a suitable training data, a new dataset 
that includes people walking and fall poses was created. 

 

3.1 Dataset Generation1 
The dataset was generated from videos recorded using a Basler 
acA1300 camera at 75 fps in top-view configuration (Figure 2). 
The videos were acquired in 4 sessions during varied days/times. 
Each session produced around of 10 videos, which include one or 
two people walking at the same time under the camera, obstacles 
in the environment and people simulating four different fall 
categories (face up, face down, on side, slip). 

From these videos, 14.614 images were originally obtained (Table 
1). Additionally, some transformations such as Gaussian noise, 
salt and pepper, and rotations were applied in order to increase the 
diversity and robustness of the dataset. As result, 146.124 images 
of 640x360 pixels were created. Some examples are shown in 
Figures 3-5.  

 
Figure 2: Top-view configuration for the dataset generation 

                                                                 
1 The whole set of images used for training and validation, as well as the 

obtained results, will be shared together with the proposed CNN's 
models. 



 

Table 1: Original number of images obtained for each 
category 

Category Subcategory N° Images 

  Head 
Head 3.662 
No Head 4.352 

  Fall 

Fall1 1.114 
Fall2 800 
Fall3 1.077 
Fall4 1.135 

Floor 2.019 
Obstacle 455 

TOTAL 14.614 
 

 

3.2 DCNNs Training 
The Fine-Tuning method has been applied in order to train the 
DCNNs. The idea of Fine-Tuning is that a pre-trained model will 
act as a feature extractor (until the next-to-last layer), then the last 
layer is trained for a new classification model. In this research, 
AlexNet and Inception-v3 models in MatConvNet and 
TensorFlow libraries were used for training new models with 
diverse images selected from the dataset (Table 2).  

Three approaches were used for training the data: Head 
classification using TensorFlow, Fall classification using 
MatConvNet and classification comparison of libraries (for heads 
and falls). The next sections explain the libraries and training 
processes. 

 

 
Figure 3: Images of scene with person walking, obstacles and 

floor. 
 

 

 
Figure 4: Images of fall poses, head, and no head. 

 
 

 
Figure 5: Original image with transformations  

 

  



Table 2: Number of images used for DCNNs training 

Model Category N° Images 

Head 
Head 3.453 
No Head 4.250 

Fall 

Fall1 1.047 
Fall2 790 
Fall3 1.077 
Fall4 307 
Floor 455 
Obstacle 425 
Walk 1.007 

 
 

3.2.1 TensorFlow training 
TensorFlow is an open source software library for numerical 
computation using data flow graphs. Nodes in the graph represent 
mathematical operations, while the graph edges represent the 
multidimensional data arrays (tensors) communicated between 
them. The flexible architecture allows processing the data in one 
or more CPUs or GPUs in a desktop, server, or mobile device 
with a single API. 

TensorFlow has good design considerations for neural network 
training, and at the same time avoids being totally a neural 
network framework. It includes graph collections, queues, image 
augmenters etc., which can be useful building blocks for a higher-
level wrapper.  

It was decided to use TensorFlow for head classification by 
applying the Fine-Tuning technique in the DCNN training. The 
available models in the TensorFlow library are: CIFAR10 and 
Inception-v3, however Inception-v3 is the only model that allows 
fine-tuning so far, which was chosen. Inception-v3 is really a 
great architecture and it is the result of multiple trial and error 
cycles, it often achieves the best performance for image 
recognition among other models. 

Training with TensorFlow was performed on a Microsoft AZURE 
server with the following features: UBUNTU 16 Operating 
System, Intel Xeon R E5-2673 v3 (Haswell) processor, 4GB 
RAM and 500GB Hard Disk. Although TensorFlow has received 
a lot of attention for being a very promising framework, it 
currently only supports cuDNNv3 version and not the cuDNNv7.5 
that was installed on the computer during the training processing. 

All networks were trained with the same parameters, 10,000 
training steps, 10% of data for testing and 10% of data for 
validation; values defined by recommendation in tutorials of the 
TensorFlow official page. 

 

3.2.2 MatConvNet training 
MatConvNet is a toolbox for the Convolutional Neural Networks 
implementation in the Matlab environment. MatConvNet allows 
easy manipulation of the DCNNs architecture by means of 
building blocks, it provides a variety of optimizations by 
supporting GPU calculations and a flexible use of existing models 
for Fine-Tuning application [25]. 

The implementation of this technique was performed with the pre-
trained DCNN model AlexNet, which is one of the most popular 
models used in the field of DCNNs and winner of the ILSVRC-
2012 challenge. In [26] its architecture is described, this network 
is composed of eight learned layers, five convolutional layers, 

max-pooling layers, dropout layers, and three fully connected 
layers, it was designed for classification of 1000 categories. In this 
existing model, the last fully-connected layer was replaced with 
random weights and new categories to be classified were 
specified, then dropout layers were added between the fully 
connected layers in order to avoid over-fitting. The "dropout" 
technique consists of randomly deactivating connections of 
neurons during the training process to avoid the dependence of a 
neuron with other particular neurons.  

Before the procedure, the train and test sets were prepared with 
images of the proposed categories and respective labels were 
defined. A re-training of the network was then performed with the 
new dataset available. This approach indicates that the entire 
network were trained, but with better initialization of weights 
(first layers) and not random values, which would help make the 
learning of the network much faster and more effective. 

The training was performed in Matlab 2016b with MatconvNet 
1.0-beta20 version compiled for GPU on a computer with 
NVIDIA Quadro K2200 video card. 

 

4. EXPERIMENTAL RESULTS 
The accuracy was estimated based on the average of the 
Sensitivity or True Positive Rate (TPR) and the Specificity or 
True Negative Rate (TNR). 
 

 𝑇𝑃𝑅 = 𝑇𝑃

𝑇𝑃+𝐹𝑁
      (1) 

 
𝑇𝑁𝑅 =

𝑇𝑁

𝑇𝑁+𝐹𝑃
       (2) 

 
Table 3 and 4 show the result of the DCNN training processes 
using diverse amount of images randomly selected. The validation 
accuracy is estimated employing the same images used for 
training, while the test accuracy uses different images.  
In order to assess the performance of the DCNNs trained for fall 
detection, 3400 images were tested (1730 falls and 1670 notfall). 
Similarly, 3700 test images were used for evaluating the head 
detection CNNs (1650 head and 2050 nohead). In both cases, 
image sets included original images and images after 
transformations were applied. 
 

Table 3: Test results for Fall detection DCNN. 

N° 
Images 

Validation 
Accuracy TPR TNR Test 

Accuracy 
1.500 99,07% 97,93 % 82,45% 90,19% 
2.500 99,52% 97,75 % 87,80% 92,77% 
3.500 99,26% 98,91 % 88,28% 93,60% 
4.500 99,29% 98,73 % 87,98% 93,35% 
18.700 99,26% 97,98 % 94,94% 96,46% 
49.500 99,51% 98,33 % 94,46% 96,40% 

 

Table 4: Test results for Head detection DCNN. 

N° Validation TPR TNR Test 
Images Accuracy Accuracy 
2.906 97,80% 96,29 % 83,72% 90,00% 
4.906 96,00% 96,05 % 85,04% 90,56% 
6.906 97,60% 95,38 % 79,65% 88,76% 
34.872 95,60% 96,05 % 94,33% 95,19% 
58.872 96,40% 97,21 % 93,56% 95,38% 
82.872 96,20% 96,68 % 93,41% 95,04% 



 
In order to analyse the influence of transformations introduced 
into the dataset, the DCNNs were also trained using sets of images 
with and without transformations (1700 and 18700 images 
respectively) for 2 and 4 categories. These results are shown in 
Tables 5 and 6.

 

Table 5: Test results for Fall detection DCNN with and 
without transformation using 2 categories. 

Transforma
tions 

Validation 
Accuracy 

Fall 
(%) 

Not Fall 
(%) 

Test 
Accuracy 

no 99,64% 97,12 82,90 90,01% 
yes 99,26% 97,98 94,94 96,46% 

 
Table 6: Test results for Fall detection DCNN with and 

without transformation using 4 categories. 

Transfor
mations 

Validation 
Accuracy 

Fall 
(%) 

Floor 
(%) 

Obst. 
(%) 

Walk 
(%) 

Test 
Accuracy 

no 96,11% 86,82 95,05 85,85 86,50 88,55% 
yes 96,37% 97,64 97,53 80,72 93,65 92,39% 

 

4.1 Tensorflow vs Matconvnet 
A new random set of 41000 images were used in order to 
compare the models of both libraries, based on the results of 
Table 3 and 4. These tests were realised in a Core i3 PC with 
6GB RAM. The average processing time for each test image 
was 153.16 ms for Matconvnet and 0.022 ms for TensorFlow. 
Table 7 and 8 depict the results of both libraries trained for Head 
and Fall detection respectively. 

 
Table 7: Libraries’ results for Head detection. 

Library Val TPR TNR Test 
Accuracy Accuracy 

Tensorflow 96,00% 95,83% 93,65% 94,74 
Matconvnet 99,42% 99,58% 75,82% 87,7 

 
 

Table 8: Libraries’ results for Fall detection. 

Library Val TPR TNR Test 
Accuracy Accuracy 

Tensorflow 98,00% 99,02% 98,21% 98,61 
Matconvnet 99,88% 99,45% 93,02% 96,24 

 

 

5. CONCLUSIONS AND FUTURE WORKS 
The introduction of transformations into the original dataset 
increased the test accuracy of the DCNNs. In the case of 2 
categories' DCNNs the accuracy increased 6%, while 4 
categories’ DCNNs increased around 3%. It could be appreciated 
that fall classification produce the lowest detection rates for 
obstacles, since many of the images in this categories were 
misclassified as background images with no people (floor) 
because they both share a lot of common characteristics. On the 
other hand, the category with the best accuracy was 'fall' because 
it has less overlapping with the other classes. 

When comparing TensorFlow and Matconvnet results, it can be 
seen that TensorFlow produced the best result for Head detection 
and Fall detection with 94.74% and 98.61% accuracy, 
respectively. In addition, TensorFlow processing time (0.022 ms) 
allows real time application of the system, which is one 
requirement for Kishwar's vision module. 

We are currently in the process of acquiring a larger dataset from 
4 different top view perspectives of a scene (2 pair of parallel 
cameras), which will serve as the basis for new training data with 
a diverse combination of images. This dataset could also take 
advantage of the parallel arrange in order to create deep images 
that could provide more information for the classification process. 
Also, multiple people in the same scene will be introduced in the 
future dataset.  

Since current dataset only includes a maximum of 2 people at the 
time, the system may suffer from occlusion for multiple moving 
objects. In addition a tracking process may need to be introduced 
in order to increase reliability for real scenarios. 
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