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Abstract

This paper summarizes the top contributions to the first
challenge on thermal image super-resolution (TISR) which
was organized as part of the Perception Beyond the Visible
Spectrum (PBVS) 2020 workshop. In this challenge, a novel
thermal image dataset is considered together with state-
of-the-art approaches evaluated under a common frame-
work. The dataset used in the challenge consists of 1021
thermal images, obtained from three distinct thermal cam-
eras at different resolutions (low-resolution, mid-resolution,
and high-resolution), resulting in a total of 3063 thermal
images. From each resolution, 951 images are used for
training and 50 for testing while the 20 remaining images
are used for two proposed evaluations. The first evalu-
ation consists of downsampling the low-resolution, mid-
resolution, and high-resolution thermal images by ×2, ×3
and ×4 respectively, and comparing their super-resolution
results with the corresponding ground truth images. The
second evaluation is comprised of obtaining the ×2 super-
resolution from a given mid-resolution thermal image and
comparing it with the corresponding semi-registered high-
resolution thermal image. Out of 51 registered participants,
6 teams reached the final validation phase.

1. Introduction

Single image super-resolution (SR) is a challenging, ill-
posed problem, that is still solved using conventional meth-
ods. In recent years, deep learning techniques have shown
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better results. Most of these methods have been largely
used in the visible spectral domain. In contrast to visible
spectrum images, thermal images tend to have poor resolu-
tion which could be improved by using learning-based tradi-
tional SR methods. These methods work by down-sampling
and adding noise and blur to the given image. The poor
quality noisy and blurred images, together with the given
ground truth images, are used in the learning process.

The approach mentioned above has been frequently used
to tackle the SR problem, however there are few contribu-
tions where the learning process is based on the usage of
a pair of images (low and high-resolution images) obtained
from different cameras. A novel thermal image dataset has
been created containing images with three different reso-
lutions (low-resolution (LR), mid-resolution (MR), high-
resolution (HR)) obtained with three distinct thermal cam-
eras.

The TISR Challenge1 consists of creating a solution ca-
pable of generating a SR thermal image in ×2, ×3, and
×4 scales from cameras with different resolutions, in the
conventional way by downsampling, and adding noise to
the given ground truth image. Additionally, a ×2 SR im-
age must be generated from the image obtained with a MR
camera. This ×2 SR image is evaluated with respect to the
corresponding image obtained from a HR camera.

The remainder of this paper is organized as follows.
Section 2 introduces the objectives of the challenge, and
presents the dataset and evaluation methodology. Section 3
summarizes the results obtained by the different teams. In
Section 4, a short description of each teams’ approach is
provided. Finally, the paper is concluded in Section 5

2. TISR Challenge
The objectives of the TISR challenge are the following:

(i) promote state-of-the-art approaches for the SR problem

1http://vcipl-okstate.org/pbvs/20/challenge.
html
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Figure 1. A mosaic with three different resolution thermal images
from each camera for visual comparison: (left) crop from a LR
image; (middle) crop from a MR image; (right) crop from a HR
image [10].

in the thermal image domain; (ii) evaluate and compare the
different solutions; and (iii) promote a novel thermal im-
age dataset to be used as a benchmark by the community
working on the thermal image SR problem.

2.1. Thermal Image Dataset

The dataset used in this challenge was recently presented
in [10]. It consists of a set of 1021 thermal images acquired
by using three thermal cameras with different resolutions.
The dataset contains images from indoor and outdoor sce-
narios under various lighting conditions (e.g., morning, af-
ternoon, and night) and objects (e.g., buildings, cars, peo-
ple, vegetation). The cameras were mounted in a rig that
minimizes the baseline distance between the optical axis
such that the acquired images are almost registered. Fig-
ure 1 presents a mosaic obtained with images from each
camera (i.e., LR, MR, and HR). The camera parameters are
given in Table 1 and illustrations from each camera depicted
in Figure 2.

2.2. Evaluation Methodology

Peak signal-to-noise ratio (PSNR) and structural simi-
larity (SSIM) measures are computed over a small region
of the images in order to evaluate the performance of the
proposed solution. In this challenge two kinds of evalua-
tions are performed. For the first evaluation, a set of 10
down-sampled and noisy images from each resolution (LR,
MR, and HR) are considered. Downsampling scale factors
of ×2, ×3, and ×4 are performed and Gaussian noise of
10% is added. Figure 3 presents an illustration of this first
evaluation process.

The second evaluation consists of computing the PSNR
and SSIM of the obtained SR images with respect to the
corresponding ground truth images. The ground truth im-
ages are of the same resolution as the computed SR, but
are acquired with a different higher resolution camera. For
the second evaluation, a set of 10 MR images is considered.
The obtained SR images, from the MR set, are compared
with the corresponding HR images which have been ac-

quired with another camera. SIFT, SURF, and ORB descrip-
tors are used to acquire characteristic keypoints between the
MR and HR thermal images. Obtaining the mapping param-
eters allows for overlapping the two images (for more de-
tails see [10]). The evaluation measures (PSNR and SSIM)
are performed over a central cropped region of the image.
Figure 4 illustrates the second evaluation process.

3. Challenge Results

From 51 participants registered in the challenge, 6 teams
made it to the final phase and submitted results together
with their corresponding extended abstracts. Table 2 shows
the average results (PSNR and SSIM) for each team in the
two evaluations. A brief description of the thermal SR ap-
proach proposed by each team is presented in Section 4. In-
formation about the team members and their affiliations is
provided in Appendix A. According to the figures presented
in Table 2, the winner of the TISR Challenge - PBVS 2020
is the MLCV-Lab SVNIT NTNU team, who achieved the
top results in most of the evaluation tasks. The COUGER
AI team achieved the best results for the second evaluation.
Teams that did not reach the baseline results (i.e., bicubic
interpolation) were not considered in this report.

4. Proposed Approaches and Teams

This section briefly presents the approaches proposed by
the different teams.

4.1. HPZ-OSU

HPZ-OSU team follows the s-LWSR super-resolution
framework [6, 5, 13], where the images are processed in
small patches through residual networks. To deal with the
added noise and the noise from thermal images’ nature, a
noise reduction process, referred to as PZ, is proposed. This
approach has been originally designed for color noise, but
it also works well with other kind of noise, such as white
noise or Gaussian noise. The proposed network has been
trained for the three super-resolution tasks of Evaluation 1.

The proposed architecture is presented in Figure 5; it
first converts the image into the Y UV space, then applies
two-time-filtering along the horizontal and vertical direc-
tion. For each target pixel, the filter kernel is defined by the
Y UV values of the local pixels together with the relative
distances to the target pixel.

All experiments were performed on a workstation with
an 8GB NVIDIA 1070 GPU, using the Python program-
ming language with PyTorch as a platform. The given
dataset has been split up into 800 images for training and
151 images for testing. For the first evaluation, per each
epoch, different noise values have been added, the model
with best PSNR score has been selected. For the second



Figure 2. An example of thermal images acquired by each camera. (left) LR image with 160×120 native resolution from an Axis Domo
P1290. (middle) MR image with 320×240 native resolution from an Axis Q2901-E. (right) HR image with 640×480 resolution from
an FC-6320 FLIR (native resolution is 640×512) [10].

Table 1. Thermal Camera Specifications (Note: HR images have been cropped to 640×480) [10].
Image Description Camera Brand FOV Focal Length Native Resolution Total # of Images

Low (LR) Axis Domo P1290 35.4 4mm 160×120 1021
Mid (MR) Axis Q2901-E 35 9mm 320×240 1021
High (HR) FC-632O FLIR 32 19mm 640×512* 1021

Figure 3. An illustration of the first evaluation process (×2 for low,
×3 for mid, ×4 for high).

evaluation, the same network is trained using HR (640x480)
images downsampled by 2.

4.2. CVC-UAB

CVC-UAB team proposes a Lightweight Multi-Path
Residual Network (LMPRNet) intended for thermal im-

Figure 4. A illustration of the second evaluation process. Note that
this evaluation is applied over a set of 10 MR images.

age super-resolution. This architecture makes the network
pay attention to learning more abstract features by letting
abundant low-frequency features to be avoided via multi-
ple connections. Additionally, to seek a better trade-off be-
tween performance and applicability, a novel module is in-
troduced, referred to as Residual Module (RM), which con-
tains Residual Concatenation Blocks that connected to each
other with global skip-connection; build with a set of Adap-



Team
Evaluation 1 Evaluation 2

×2 ×3 ×4 ×2 (MR to HR)
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

HPZ-OSU 26,06 0,8686 26,11 0,8373 27,32 0,8589 19,98 0,7416
CVC-UAB 26,04 0,8651 25,97 0,8326 27,12 0,8555 19,93 0,7419

MLCV-Lab SVNIT NTNU 25,81 0,8858 26,35 0,8531 27,72 0,8758 20,02 0,7452
LISA-ULB 25,57 0,8401 25,17 0,7583 26,31 0,7824 20,09 0,7385

COUGER AI 25,45 0,8529 25,96 0,8271 27,31 0,8498 20,36 0,7595
RVL-UTA 24,72 0,8325 25,37 0,8211 26,11 0,8415 19,90 0,7391

Bicubic 24,47 0,8511 25,37 0,8172 26,74 0,8421 20,24 0,7515

Table 2. TISR Challenge: the average results from the evaluations detailed in Section 2.2. The bold and underline values correspond to the
first and second best results, respectively.

S-LWSR 
Module

Final OutputPZ Denoise
ModuleInput images

-> Convert image to YUV space
-> Horizontally Filtering
-> Vertically Filtering  
-> Output results

Figure 5. HPZ-OSU proposed architecture with color noise reduc-
tion process, where the s − LWSR module uses the framework
in [5].

tive Residual Blocks (ARB) with local skip-connection, see
Figure 6. Each ARB is defined as a divers residual path-
ways learning to make use of all kinds of information form
LR space. The LMPRNet design has the benefits of a multi-
level learning connection and also takes advantage of prop-
agating information throughout the network. As a result,
each block has access to information of the preceding block
via local and global skip-connections and passes on infor-
mation that needs to be preserved. By concatenating differ-
ent blocks followed by 1 × 1 convolutional layer the net-
work can reach both intermediate and high-frequency in-
formation, resulting in better image reconstruction. Finally,
a new practical attention mechanism (TFAM) is proposed
by focusing on both channel and spatial information. The
main objective of TFAM is to enhance the representation
power of the model by emphasizing informative features
and reduce worthless ones. In contrast to [12] that applies
sequentially two modules by two joint sigmoid operations,
which is not practical for lightweight models and edge de-
vices. The proposed TFAM applies channel and positional
units simultaneously with a different set of operations and a
single hard sigmoid function.

In the training stage, input patches with a size of 60×60
from each of the randomly selected 64 training images were
used. The number of patches is augmented by random hor-
izontally flips and 90-degree rotation. The Adam optimizer

with default setting has been employed. The initial learn-
ing rate set to 10−3 and its halved every 4 × 105 steps.
L1 is used as a loss function to optimize the model. The
proposed LMPRNet model is implemented in the PyTorch
framework. The proposed network has been trained using
a 3.2 eight-core processor with 32GB of memory with a
NVIDIA GeForce GTX TITAN X GPU;

4.3. MLCV-Lab SVNIT NTNU

Figure 7 depicts the framework proposed by MLCV-
Lab SVNIT NTNU team for thermal image super-
resolution. A new ResBlock module, inspired from
Inception network [1], is designed (see Figure 8). A
channel attention (CA) module [13] is also adopted to
adaptive re-scale the channel-wise features by considering
inter-dependencies between channels. Furthermore, the
local skip connection is utilized in each ResBlock in which
the higher layer gradients are bypassed to the lower layer.
In addition, long skip connections after six number of
ResBlocks, which bypasses the higher layer gradients
directly to the first convolution layer, are used. These skip
connections help to solve the problem of exploding or
vanishing gradient. In the proposed method, the parametric
exponential linear unit (i.e., PeLU) activation function [11]
is utilized. The feature maps are up-scaled to the desired
resolution level by using the sub-pixel convolution layer.

All experiments have been performed on a workstation
with the following specifications: Intel Core i7 − 7700K
processor, 32 GB RAM with NVIDIA GeForce GTX 1070
8GB GPU. The code is implemented using Tensorflow li-
brary. The proposed network is trained using l1 loss func-
tion with a learning rate of 10−4 and the same is optimized
using Adam optimizer with β = 0.5. The proposed model
was trained up to 50,000 iterations with a batch size of 4.
The given training images are augmented using flipping and
rotating operations. In the up-sample block, the value of f
is set to 63 for ×3 and 64 for ×2 and ×4.



Figure 6. CVC-UAB architecture of the proposed Lightweight Multi-Path Residual Network (LMPRNet).

Figure 7. MLCV-Lab SVNIT NTNU proposed architecture.

Figure 8. ResBlock design for the MLCV-Lab SVNIT NTNU ar-
chitecture.

4.4. LISA-ULB

The LISA-ULB team introduces a model referred to as
VCycles BackProjection (VCBP); it is designed to be scal-
able to meet the requirements of upscaling the image by
(×2, ×3, ×4) factors while maintaining the performance
with a small number of parameters. The main contributions
are: (i) an iterative module of shared parameters and Back-
projection procedures between cycles; (ii) a new training
strategy by constructing the model backwardly.

The model shown in Figure 9 consists of four modules:
Encoder (E), Decoder (D), Upsampler and Downsampler.
D and E are one convolutional layer map of the image
to and from its multidimensional features. The downsam-
pler is a one convolutional layer with stride=2 to downscale
the features from the high dimension to the low dimension

space. The upsampler is one dense network with 4 layers
and one deconvolution layer at the end when the module is
last in the sequence. All upsampler modules at the same
level (L1, L2, L3, L4) share the same parameters.

The model first upsamples the input image to the tar-
get size using bicubic interpolation and uses this image
with the low-resolution (LR) image as inputs for the model.
The model is responsible to generate the residual high-
frequency (HF) information and add them to the encoded
features before decoding them back into the image space.
In each VCycle the model downscales the accumulated fea-
tures from the previous and the current cycle to be the in-
put for the next cycle. This procedure enforces the model
to generate features in the high-resolution (HR) space while
maintaining the similarity in its LR space. All downsampler
modules share the same parameters to ensure that all earlier
down-sampled features are similar to the encoded features
of the LR input image. Only the last down-sampled features
are used for the backprojection loss.
LL1(x, y) = E[|x − y|] is used for the content loss and

the Backprojection loss. The total loss function is:

LL1(SR,HR) + 0.01 ∗ LL1(BP, a),

(BP ) and (a) are the encoded features in the LR space of the
down-sampled super-resolved features and the input image
features respectively.

The VCBP network has been implemented in Pytorch
and performed on a NVIDIA TITAN XP. The proposed
model was trained using the AdamW optimizer followed
by SGDM. Instead of building the model forwardly, a new
building and training procedure is proposed, which add
models backwardly for each new upscaling factor as shown
in Figure 10. The last model in the sequence responsible
for generating all the natural super-resolved images, while
added earlier stages responsible for producing intermediate
super-resolved images. This allows to train the model on
larger image sizes. The model has 883K parameters and
each upscaling factor module was trained on the three train-
ing sets.



Figure 9. LISA-ULB proposed architecture.

Figure 10. LISA-ULB proposed building model.

4.5. COUGER AI

The COUGER AI team proposes an architecture for the
task of generating×2,×3 and×4 resolution images, which
are acquired at three different resolutions. The proposed ap-
proach is based on a neural network that utilizes the coor-
dinate convolutional layer [8] and residual units [2], along
with the multi-level supervision and attention unit to map
the information between LR images to MR and HR images.

As shown in Figure 11, firstly, the bicubic interpolated
input image is mapped in Cartesian space using the coordi-
nate convolutional layer [8]. In each base block, two resid-
ual units along with the one convolutional layer are used.
The output of each base block is up-sampled according to
the output resolution requirement. All the up-sampled out-
puts are then fused to the Convolutional Block Attention
Module (CBAM) [12]. Also, to improve the pixel-wise
resolution, a multi-level supervision is applied on each up-
sampled layer, inspired on [4] [9].

To supervise the model output, a combination of three
losses are used: mean squared error (MSE), SSIM, and So-
bel, i.e.,

TotalLoss =MSE + SSIMLoss + SOBELLoss.

In total, three (×2,×3,×4) networks are trained for generat-
ing the high-resolution images from the low-resolution in-

Figure 11. COUGER AI proposed architecture: A Multi-Level Su-
pervision Model

put images in Keras 2.2.4. Input images are normalized be-
tween 0 to 1 and introduced with Gaussian noise (mean = 0
and sigma = 10). The dataset was trained using a NVIDIA
1080 GTX GPU.

4.6. RVL-UTA

The RVL-UTA team presents a novel network for ther-
mal image super-resolution (SR) called the Multiscale
Residual Channel Attention Network (MSRCAN). The ar-
chitecture is inspired by state-of-the-art methods to recover
details from low-resolution (LR) RGB images such as: very
deep residual channel attention networks (RCAN) [13],
learning a mixture of deep networks for single image SR
(MSCN) [7], and multiscale convolutional neural networks
(CNNs) (MSSR) [3]. RCAN allows deeper CNN models,
which result in more feature representation. MSCN uses
multiple parallel inference modules with sequentially in-
creased dilation factors and an adaptive weight (AW) mod-
ule allowing for multiscale SR outputs and pixel-wise AW
summation. MSSR provides a model for parallel CNN
paths with different depths corresponding to multiscale SR



image outputs. The proposed MSRCAN implements a com-
bination of all these networks to produce higher PSNR and
SSIM scores, as well as sharper SR output images.

The inputs to MSRCAN are bicubicly up-sampled LR
images. These LR images pass through parallel RCAN SR
inference modules, which produce high-resolution (HR) es-
timates that are aggregated using AW modules at the pixel
level. The receptive field of the convolutions within each
of the SR modules linearly increases against the number
of modules. This is done by increasing the dilation factor
by two for each of the parallel modules. Different recep-
tive fields of each SR inference module allow the network
to produce an HR estimate for varying scales as was done
with MSSR. Each SR inference module is pixel-wise mul-
tiplied with its corresponding AW module according to the
architecture of MSCN. The sum of these pixel-wise prod-
ucts produces the HR estimate. An overview of the network
architecture is shown in Figure 12.

Figure 12. The RVL-UTA proposed MSRCAN architecture.

MSRCAN was trained on a workstation with a NVIDIA
Quadro P4000 GPU, Intel Core i7-8700 CPU, and 32GB of
RAM. It was written with the Python 3.7.6 programming
language and the Tensorflow v1 library. In addition, the fol-
lowing modules were used: PIL, Pyelastix, OpenCV, Im-
ageIO, TQDM.

5. Conclusions

This paper summarizes the best contributions to the
Thermal Image Super-Resolution Challenge - PBVS 2020,
where 51 teams from 17 different countries have partici-
pated and 6 teams reached the final validation phase. This
was the first time this challenge has been proposed and a
wide interest from the research community has been ob-
served. Undoubtedly, the results from this year will be
used as the benchmark for next year’s challenge. This chal-
lenge has also been an opportunity to promote the evalua-
tion dataset used by the participating teams.
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