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Abstract—This paper proposes a novel approach to generate
Normalized Difference Vegetation Index (NDVI) from just a near
infrared (NIR) image. NDVI values are obtained by using images
from the visible and infrared spectral bands. The proposed
approach is based on the usage of a Conditional Generative
Adversarial Network (CGAN) architecture model. In the first
stage it learns how to generate the NDVI index from the given
input image. Three different architectures are evaluated, flat,
siamese and triplet models. In the evaluated models, the final
layer of the architecture considers the infrared image to enhance
the details, resulting in a sharp NVDI image. Then, in the second
stage, a discriminative model is used to estimate the probability
that the generated index cames from the training dataset, rather
than the index automatically generated. In the experiments phase
the three generative adversarial models were tested with the
objective of determining which one generates NDVI values with
the greatest similarity to the ones numerically calculated from the
usage of visible and infrared images (ground truth). Experimental
results with a large set of real images are provided showing that
triplet model is the best one that reaches the best performance.

Index Terms—Image vegetation index, Convolutional neural
networks, Generative adversarial networks, Cross-spectral imag-
ing.

I. INTRODUCTION

Computer vision tackles problems related with object detec-
tion and recognition, texture classification, action recognition,
segmentation, tracking, data retrieval, image alignment, just to
mention a few. In general, computer vision solutions are based
on representing the given image using some global or local im-
age properties, and then comparing them using some similarity
measure [1]. Recently, deep learning based approaches are
obtaining remarkable results in computer vision applications,
as well as in a large number of fields. For instance, learning
visual similarities has been recently presented with success
working on images in the mono-spectral or in cross-spectral
domain [2], [3].

Geographic Information Systems (GIS) and remote-sensing
technology allow following of changes to the earths sur-
face on larger spatial and temporal scales than are possible
through ground census techniques. Remotely sensed data
are an interpretation of various spectral signals that reach a

sensor after interacting with objects on the earths surface.
These interpretations can reveal many physical characteristics
of objects present in the scene, including surface elevation,
temperature, and various aspects of the vegetation and land
cover. One of the branches of the environmental resources
management is the study of agricultural crops and vegetation
cover, which are commonly the principal focus of remote
sensing investigations. The obtained information is used for
monitoring and evaluating the earths vegetative cover. One
of the ways to obtain this kind of information is by means
of the usage of vegetation indexes. Vegetation indexes are
used to determine the health and strength of vegetation and
their definitions involve several factors, like soil reflectance,
atmosphere, vegetation density, etc. with the aim to obtain
those formulas that get more reliable information about vege-
tation based on remotely sensed values. The usual form of
a vegetation index (VI) is a ratio of reflectance measured
in two bands, or their algebraic combination. Spectral ranges
(bands) to be used in VIs calculation are selected depending
on the spectral properties of plants. In the area of applications
and research in satellite remote sensing, over forty different
vegetation indexes have been developed during the last two
decades, like RVI, NRVI, TVI, CTVI, etc.; it can be observed
that many scientists have developed indexes related to their
specific field of research [4]. The most commonly used index is
the Normalized Difference Vegetation Index (NDVI), proposed
by Rouse et al. [5]; in general, it is used to determine the
condition, developmental stages and biomass of cultivated
plants and to forecasts their yields. The scale of this index
goes from -1 to 1, with the value zero representing the
approximate where the absence of vegetation begins. Negative
values represent non-vegetated surfaces. According to [5] this
index is calculated as the ratio between the difference and sum
of the reflectance in NIR and red regions:

NVDI =
RNIR −RRED

RNIR +RRED
(1)

where RNIR is the reflectance of NIR radiation and RRED is
the reflectance of visible red radiation.
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The NIR spectral band is the closest in wavelength to the
radiation detectable by the human eye; hence, NIR images
share several properties with visible images. The interest of
using NIR images is related with their capability to segment
images according to the object’s material. Surface reflection
in the NIR spectral band is material dependent, for instance,
most pigments used for material colorization are somewhat
transparent to NIR. This means that the difference in the
NIR intensities is not only due to the particular color of the
material, but also to the absorption and reflectance of dyes.

In this context, the current paper tackles the NVDI vegeta-
tion index generation automatically from just a near infrared
(NIR) image after a learning process using Conditional Gen-
erative Adversarial Network (CGAN). Different applications
could take advantage of this contribution—another type of
vegetation index can be inferred from any spectral band using
the same learning process.

Based on the usage of Conditional Generative Adversar-
ial Networks (CGANs), we propose to use the architecture
presented in [6], but including a triplet learning model and
a conditional NIR image at the final layers of the learning
model to improve the details of the generated NDVI vegetation
index. The rest of the paper is organized as follows. Section
II describes the most recent work on deep learning based
remote sensing for vegetation index estimation. Section III
presents the adapted Conditional Generative Adversarial Net-
work architecture proposed in this work, detailing the design
and training with cross-spectral datasets. Section IV depicts
the experimental results and finally, conclusion are presented
in section V.

II. RELATED WORK

Recently, the improvements in the acquisition process that
allow to obtain images of higher resolution along with the
computational intelligence using models of deep learning
has been able to enhance the intelligent interpretation of
the images coming from huge datasets. In [7] a semantic
segmentation algorithm to process earth observation data
using multi-modal and multi-scale deep networks has been
presented. The approach is able to generate dense scene labels,
using an encoder-decoder architecture. A similar approach
has been proposed to robust semantic scene understanding
of unstructured environments to support robots operating in
the real world [8]. Several inherent natural factors such as
shadows, glare, vegetation and snow make the semantic scene
understanding problem highly challenging. In [8] the usage
of multi-spectral and multimodal images helps to increase
the robustness of segmentation in real-world outdoor envi-
ronments. The authors introduce early and late fusion archi-
tectures for dense pixel-wise segmentation from RGB, Near-
Infrared (NIR) channels, and depth data. There is another
paper that addresses the problem of automated detection of
harmful algal blooms (HABs) via analysis of image data of
inland water bodies. These image data are acquired using a
variety of smartphones and communicated via popular OSM
platforms such as Facebook, Twitter and Instagram accounts

for the wide variations in imaging parameters and ambient
environmental parameters, see [9]. In this applications a deep
learning approach is used to extract image features and classify
them for the purpose of HAB detection. Another approach
has been presented by [10]; this work exploits a pipeline
that includes two different Convolutional Neural Networks
(CNNs). These CNNs are applied to the input RGB+NIR
images in order to extract the pixels that represent projections
of 3D points that belong to green vegetation. Then, a deeper
CNN is then used to classify the extracted pixels between
the crop and weed classes. The important contribution of
this work is the novel unsupervised dataset summarization
algorithm that automatically selects from a large dataset the
most informative subsets that better describe the original one.
This fact permits to streamline and speed-up the manual
dataset labeling process, against an extremely time consuming,
while preserving good classification performances.

Recently, Generative Adversarial Network based learning
techniques have been used obtaining appealing results; actu-
ally, in most of the cases they are among the best options, (e.g.,
see [11]. This (GAN) networks are becoming the dominant
tool to tackle most of computer vision problems. GANs
are powerful and flexible tools, one of their most common
applications is image generation. In the GAN framework [12],
generative models are estimated via an adversarial process,
in which simultaneously two models are trained: i) a gen-
erative model G that captures the data distribution, and ii)
a discriminative model D that estimates the probability that a
sample came from the training data rather than G. The training
procedure for G is to maximize the probability of D making
a mistake. In this architecture it is possible to apply certain
conditions to improve the learning process. According to [13],
to learn the generators distribution pg over data x, the generator
builds a mapping function from a prior noise distribution pz(z)
to a data space G(z; θg). and the discriminator, D(x; θd),
outputs a single scalar representing the probability that x came
from training data rather than pg . G and D are both trained
simultaneously, the parameters for G are adjusted to minimize
log(1−D(G(z))) and for D to minimize logD(x) with a value
function V (G,D):

min

G

max

D
V (D,G) = Ex∼p data(x)[logD(x)] + (2)

Ez ∼p data(z)[log(1−D(G(z)))].

Generative adversarial networks can be extended to a condi-
tional model if both the generator and discriminator are condi-
tioned on some extra information y. This information could be
any kind of auxiliary information, such as class labels or data
from other modalities. We can perform the conditioning by
feeding y into both discriminator and generator as additional
input layer. The objective function of a two-player minimax
game would be as:

min

G

max

D
V (D,G) = Ex ∼p data(x)[logD(x|y)] + (3)

Ez ∼p data(z)[log(1−D(G(z|y)))].



CONDITIONAL GENERATIVE ADVERSARIAL PROCESS

Synthetic NDVI

Y ( NIR image )

NVDI vegetation index

Z ( Gaussian noise )

Generator (G)

Discriminator 
(D)

P (vegetation index is true)

Discriminator Objective
P(x) = 0.5, can not distinguish
between the synthetic and
real vegetation index

Fig. 1. Conditional Generative Adversarial process implemented on the current work to estimate NDVI Vegetation Index.

In the current work a novel Conditional GAN model [14]
is proposed for vegetation index estimation; it is inspired on
both the GAN’s network architecture presented in [15] for
NIR colorization and on the triplet model proposed by [6]
for learning color channels from NIR images. Actually, it is
an adaptation of the architectures mentioned above, which
consists of reducing the number of layers, and removing the
internal noise layer, preserving the use of the NIR image added
at the final learning process to improve the image details of
the generated vegetation index.

III. PROPOSED APPROACH

This section presents the approach proposed for NDVI index
vegetation estimation. As mentioned above, it uses a similar
architecture like the one proposed on a recent works for NIR
colorization [14], where the usage of a conditional adversarial
generative learning network has been proposed. A traditional
scheme of layers in a deep network is used. In the current work
the usage of a Conditional GAN model is evaluated in three
different schemes: Flat, Siamese and Triplet. These models
have presented good performance to solve problems like
colorization, segmentation, classification, similarity learning,
object recognition, etc. Based on the results that have been
obtained on this type of solutions, where improvements in
accuracy and performance have been obtained, we propose the
usage of a learning model that allows the mapping represen-
tation of a vegetation index based on cross-spectral images.
Therefore, the model will receive as input a near infrared
patch (NIR), with a Gaussian noise added in each element of
the learning model to generate the necessary variability of the
vegetation index patches, to be able to generalize the learning
process. A l1 regularization term has been added on a single

layer in order to prevent the coefficients to fit so perfectly to
overfit, which can improve the generalization capability of the
model. Figure 1 depicts the Conditional GAN model proposed
in the current work.

A Conditional triplet GAN network based architecture is
selected due to several reasons: i) the learning process is
conditioned on NIR images from the source domain; ii) its
fast generalization capability; iii) the capacity of the generator
model to easily serve as a density model of the training data;
and iiii) sampling is quickly and efficient. The network is
intended to learn to generate new samples from an unknown
probability distribution. As mentioned above, in our case, the
generator network has been implemented in three different
schemes: Flat, Siamese and Triplet, which are evaluated in the
experimental result section. Figure 2 presents an illustration
of the GAN network with the three generator schemes. In
all the cases, at the output of the generator network the
vegetation index is obtained. This vegetation index will be
validated by the discriminative network, which will evaluate
the probability that the generated image (vegetation index in
grayscale), is similar to the real one that used as ground truth.
Additionally, in the generator model, in order to obtain a better
image representation, the CGAN framework is reformulated
for a conditional generative image modeling tuple. In other
words, the generative model G(z; θg) is trained from a near
infrared image plus Gaussian noise, in order to produce a
NDVI vegetation index image; additionally, a discriminative
model D(z; θd) is trained to assign the correct label to the
generated NDVI image, according to the provided real NDVI
image, which is used as a ground truth. Variables (θg) and
(θd) represent the weighting values for the generative and
discriminative networks.



Conditional Generative Adversarial Network Architecture:
(G) Generator Network with (Flat-Siamese-Triplet Models)

(D) Discriminator Network
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Fig. 2. GAN architecture for NDVI Vegetation Index estimation; on top the three models (Flat, Siamese and Triple) evaluated as Generator Networks; on
bottom the Discriminator Network.

IV. EXPERIMENTAL RESULTS

The proposed approach has been evaluated using NIR im-
ages and their corresponding NVDI vegetation index, obtained
from the equation presented above, in which the RGB was
used; this cross-spectral data set came from [16]. The country
and flied categories have been considered for evaluating the
performance of the proposed approach, examples of this
dataset are presented in Fig. 3. This dataset consists of 477 reg-
istered images categorized in 9 groups captured in RGB (visi-
ble spectrum) and NIR (Near Infrared spectrum). The country
category contains 52 pairs of images of (1024×680 pixels),
while the field contains 51 pairs of images of (1024×680
pixels). In order to train our network to generate vegetation
index from each of these categories 280.000 pairs of patches of
(64×64 pixels) have been cropped both, in the NIR images as
well as in the corresponding NVDI images. Additionally, 2800

pairs of patches, per category, of (64×64 pixels) have been
also generated for validation. It should be noted that images
are correctly registered, so that a pixel-to-pixel correspondence
is guaranteed.

The three Conditional Generative Adversarial networks
evaluated in the current work (Generator: Flat, Siamese and
Triplet) for NDVI vegetation index estimation have been
trained using a 3.2 eight core processor with 16GB of memory
with a NVIDIA GeForce GTX970 GPU. Qualitative results
are presented in Fig. 4 and Fig. 5. Figure 4 shows NDVI
vegetation index images from the country category generated
with the flat, siamese and triplet proposed GAN network.
Additionally, Fig. 5 shows NDVI vegetation index images
from the field category generated with the flat, siamese and
triplet proposed GAN network. Quantitative evaluations for the
different architectures have been obtained and provided below.
Up to our humble knowledge there are not previous work on



Fig. 3. Pairs of images (1024×680 pixels) from [16]; country category (the two-left columns) and field category (the two-right columns): (top) NIR images;
(middle) RBG images; (bottom) NDVI vegetation index computed from the NIR and RGB images.

TABLE I
ROOT MEAN SQUARED ERRORS AND STANDARD DEVIATION OBTAINED

WITH THE FLAT, SIAMESE AND TRIPLET CONDITIONAL GAN
ARCHITECTURES.

Training RMSE STDσs

country field country field
Flat Network 19.35 20.71 0.68 0.74

Siamese Network 17.47 18.04 0.58 0.62
Triplet Network 12.33 12.65 0.31 0.39

similar technique to estimate vegetation index using only a
single spectral band (NIR in our case). Hence, the only way to
evaluate results is by comparing the Root Mean Square Error
(RMSE) of each approach. The RMSE measures the similarity
between the estimated NDVI with respect to the ground truth,
which is the standard deviation of the residuals. Residuals are
a measure of how distant are the images compared from each
other.

Estimated NDVI vegetation index are referred to as
(NDV IESTi,j ) while the corresponding ground truth NDVI
vegetation index, numerically computed from the given data
sets, are referred to as (NDV IGTi,j

). The quantitative eval-
uation consists of measuring at every image, the root mean
square error between the estimated value and the correspond-
ing ground truth. Additionally, the standard deviation value
is computed to verify the dispersion of the errors previously
computed, and to determine whether there are or not big
outliers in the experimental results.

Fig. 4. (1st.Col) NDVI index as ground truth images from the Country
category. (2nd.Col) NDVI index results from the Flat GAN Network
(3rd.Col) NDVI index obtained with the Siamese GAN network) (4th.Col)
NDVI index obtained with the Triplet GAN network.

Table I presents the average root mean square errors
(RSME) and the standard deviation obtained with the three
architectures evaluated in the proposed work for the two
categories. It can be appreciated that the Triplet model reaches
the best result; both the RMSE and the standard deviation of
the Triplet GAN are better that those obtained with Flat o
Siamese approaches previously explained. The obtained results
show that as much levels as better results, since the network
will be more capable to learn complex scenes.

V. CONCLUSION

This paper tackles the challenging problem of NDVI vegeta-
tion index estimation by using a novel Conditional Generative



Fig. 5. (1st.Col) NDVI index as Ground truth images from the Field cate-
gory. (2nd.Col) NDVI index results from the Flat GAN Network(3rd.Col)
NDVI index obtained with the Siamese GAN network) (4th.Col) NDVI index
obtained with the Triplet GAN network.

Adversarial Network model. The novelty of the proposed
approach lies on the usage of just a single spectral band (NIR
in our case). In the work three different schemes are evaluated
(Flat, Siamese and Triplet GAN) Results have shown that in
most of the cases the network is able to obtain a reliable Nor-
malized Difference Vegetation Index representation from the
given NIR image. This technique is so novel, that comparisons
with a previous approach are not possible; so that different
variants of generative adversarial convolutional networks had
to be used to verify that the best results were obtained with
the Triplet GAN network version conditioned to the NIR
image. Future work will be focused on evaluating others
network architectures, like variational auto-encoders, recurrent
networks, cycle-consistent adversarial networks, which have
shown appealing results in recent works. Additionally, this
technique could be used to generate for any other type of
vegetation index that are so necessary at present to improve
the yield of the agricultural products controlling the biomass
of the vegetables species.
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