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Abstract. This paper focuses on near infrared (NIR) image colorization
by using a Generative Adversarial Network (GAN) architecture model.
The proposed architecture consists of two stages. Firstly, it learns to
colorize the given input, resulting in a RGB image. Then, in the second
stage, a discriminative model is used to estimate the probability that
the generated image came from the training dataset, rather than the
image automatically generated. The proposed model starts the learning
process from scratch, because our set of images is very different from the
dataset used in existing pre-trained models, so transfer learning strategies
cannot be used. Infrared image colorization is an important problem
when human perception need to be considered, e.g, in remote sensing
applications. Experimental results with a large set of real images are
provided showing the validity of the proposed approach.
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1 Introduction

Image acquisition devices have largely expanded in recent years, mainly due to
the decrease in price of electronics together with the increase in computational
power. This increase in sensor technology has resulted in a large family of images,
able to capture different information (from different spectral bands) or comple-
mentary information (2D, 3D, 4D); hence, we can have: HD 2D images; video
sequences at a high frame rate; panoramic 3D images; multispectral images; just
to mention a few. In spite of the large amount of possibilities, when the infor-
mation needs to be provided to a final user, the classical RGB representation is
preferred. This preference is supported by the fact that human visual perception
system is sensitive to (400-700nm); hence, representing the information in that
range help user understanding. In this context, the current paper tackles the near
infrared (NIR) image colorization, trying to generate realistic RGB representa-
tions. Different applications could take advantage of this contribution—infrared
sensors can be incorporated for instance in driving assistance applications by
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providing realistic colored representation to the driver, while the image process-
ing can be automatically performed by the system in the infrared domain (e.g.,
semantic segmentation at the material level avoiding classical problems related
with the color of the object surface).

The NIR spectral band is the closest in wavelength to the radiation detectable
by the human eye; hence, NIR images share several properties with visible im-
ages. The interest of using NIR images is related with their capability to segment
images according to the object’s material. Surface reflection in the NIR spectral
band is material dependent, for instance, most pigments used for material col-
orization are somewhat transparent to NIR. This means that the difference in
the NIR intensities is not only due to the particular color of the material, but
also to the absorption and reflectance of dyes.

The absorption/reflectance properties mentioned above are used for instance
in remote sensing applications for crop stress and weed/pest infestations. NIR
images are also widely used in video surveillance applications since it is easier
to detect different objects from a given scene. In these two contexts (i.e., remote
sensing and video surveillance), it is quite difficult for users to orientate when
NIR images are provided, since the lack of color discrimination or wrong color
deploy. In this work a neural network based approach for NIR image coloriza-
tion is proposed. Although the problem shares some particularities with image
colorization (e.g., [1], [2], [3]) and color correction/transfer (e.g., [4], [5]) there
are some notable differences. First, in the image colorization domain—gray scale
image to RGB—there are some clues, such as the fact that luminance is given by
grayscale input, so only the chrominance need to be estimated. Secondly, in the
case of color correction/transfer techniques, in general three channels are given
as input to obtain the new representation in the new three dimensional space.
In the particular problem tackled in this work (NIR to visible spectrum repre-
sentation) a single channel is mapped into a three dimensional space, making it
a difficult and challenging problem. The manuscript is organized as follows. Re-
lated works are presented in Section 2. Then, the proposed approach is detailed
in Section 3. Experimental results with a large set of images are presented in
Section 4. Finally, conclusions are given in Section 5.

2 Related work

The problem addressed in this paper is related with infrared image colorization,
as mentioned before somehow it shares some common problems with monocro-
matic image colorization that has been largely studied during last decades. Col-
orization techniques algorithms mostly differ in the ways they obtain and treat
the data for modeling the correspondences between grayscale and color. Non-
parametric methods, given an input grayscale image, firstly they define one or
more color reference images (provided by a user or automatically retrieved) to
be used as source data. Then, following the image analogy framework, color is
transferred onto the input image from analogous regions of the reference im-
age(s). Parametric methods, on the other hand, learn prediction functions from
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large datasets of color images at training time, posing the problem as either
regression onto continuous color space or classification of quantized color values.

Welsh et al. [6] describe a semi-automatic technique for colorizing a grayscale
image by transferring color from a reference color image. They examine the
luminance values in the neighborhood of each pixel in the target image and
transfer the color from pixels with matching neighborhoods in the reference
image. This technique works well on images where differently colored regions
give rise to distinct luminance clusters, or possess distinct textures. In other
cases, the user must direct the search for matching pixels by specifying swatches
indicating corresponding regions in the two images. It is also difficult to fine-tune
the outcome selectively in problematic areas.

The approaches presented above have been implemented using classical image
processing techniques. However, recently Convolutional Neural Network (CNN)
based approaches are becoming the dominant paradigm in almost every com-
puter vision task. CNNs have shown outstanding results in various and diverse
computer vision tasks such as stereo vision [7], image classification [8] or even
difficult problems related with cross-spectral domains [9] outperforming conven-
tional hand-made approaches. Hence, we can find some recent image colorization
approaches based on deep learning, exploiting to the maximum the capacities
of this type of convolutional neural networks. As an example, we can mention
the approach presented on [3]. It proposes a fully automatic approach that pro-
duces brilliant and sharpen image color. They model the unknown uncertainty
of the desaturated colorization levels designing it as a classification task and use
class-rebalancing at training time to augment the diversity of colors in the re-
sult. On the contrary, [10] presents a technique that combines both global priors
and local image features. Based on a CNN a fusion layer merges local informa-
tion, dependent on small image patches, with global priors, computed using the
entire image. The model is trained in an end-to-end fashion, so this architec-
ture can process images of any resolution. They leverage an existing large-scale
scene classification database to train the model, exploiting the class labels of the
dataset to more efficiently and discriminatively learn the global priors. In [11],
a recent research on colorization, addressing images from the infrared spectrum,
has been presented. It uses convolutional neural networks to perform an auto-
matic integrated colorization from a single channel NIR image to RGB images.
The approach is based on a deep multi-scale convolutional neural network to
perform a direct estimation of the low RGB frequency values. Additionally, it
requires a final step that filters the raw output of the CNN and transfers the
details of the input image to the final output image.

Generative Adversarial Networks (GANs) are a class of neural networks
which have gained popularity in recent years. They allow a network to learn
to generate data with the same internal structure as other data. GANs are pow-
erful and flexible tools, one of its more common applications is image generation.
It is a framework presented on [12] for estimating generative models via an ad-
versarial process, in which simultaneously two models are trained: a generative
model G that captures the data distribution, and a discriminative model D that
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estimates the probability that a sample came from the training data rather than
G. The training procedure for G is to maximize the probability of D making
a mistake. This framework corresponds to a minimax two-player game. In the
space of arbitrary functions G and D, a unique solution exists, with G recover-
ing the training data distribution and D equal to 1/2 everywhere. In addition
on [13] is explained Some techniques to improve the efficiency of the generative
adversarial networks, one of them called, the virtual batch normalization, which
allows to significantly improve the network optimization using the statistics of
each set of training batches. The disadvantage is that this process is computa-
tionally expensive. Our proposal is based on designing a generative adversarial
deep learning architecture that allows the colorization of images of the near in-
frared spectrum, so that they can be represented in the visible spectrum. The
following section will explain in detail the network model used.

3 Proposed approach

This section presents the approach proposed for NIR image colorization. A GAN
network based architecture is selected due to its fast convergence capability.
The network is intended to learn to generate new samples from an unknown
probability distribution. In our case, in order to obtain a true color, the GAN
framework is reformulated for a conditional generative image modeling tuple. In
other words, the generative model G(z; θg) is trained from a near infrared image
in order to produce a colored RGB image; additionally, a discriminative model
D(z; θd) is trained to assign the correct label to the generated colored image,
according to the provided real color image, which is used as a ground truth.
Variables (θg) and (θd) represents the weighting values for the generative and
discriminative networks.

The GAN network has been trained using Stochastic AdamOptimazer since
it prevents overfitting and leads to convergence faster. Furthermore, it is com-
putationally efficient, has little memory requirements, is invariant to diagonal
rescaling of the gradients, and is well suited for problems that are large in terms
of data and/or parameters. Besides, GANs provide a powerful technique for gen-
erating plausible-looking natural images with high perceptual quality. The model
was trained with the following hyper-parameters: learning rate 0.0001 and 0.0002
for the generator and the discriminator networks respectively; epsilon = 1e-08;
exponential decay rate for the 1st moment momentum 0.5 for discriminator and
0.4 for the generator; weight initializer with a standard deviation 0.0081; weight
decay 1e-5; leak relu 0.2 and patch’s size of 64×64. The convolutional architec-
ture of the baseline model is conformed by convolutional, de-convolutional, relu,
leak-relu, fully connected and activation function tanh and sigmoid for generator
and discriminator networks respectively. Additionally, every layer of the model
uses batch normalizaton for training any type of mapping that consists of multi-
ple composition of affine transformation with element-wise nonlinearity and do
not stuck on saturation mode. Figure 1 presents an illustration of the proposed
GAN architecture.



Learning to Colorize Infrared Images 5

RGB
Patch

RGB
Patch

(Colored NIR)

Infrared
Patch

D
e

-C
o

n
v

64x64x1 5x5x128 5x5x64 5x5x32 64x64x3

R
el

u

R
el

u

D
e-

C
o

n
v

R
el

u

CNN Generative Adversarial Architecture

D
e

-C
o

n
v

D
e-

C
o

n
v

5x5x16

D
e

-C
o

n
v

R
el

u

(G) Generator Network

G(z;g)

C
o

n
v

64x64x3 4x4x16 4x4x32 4x4x64 1

Le
ak

 R
el

u

Le
ak

 R
el

u

C
o

n
v

Le
ak

 R
el

u

C
o

n
v

C
o

n
v

4x4x128

Le
ak

 R
el

u

(D) Discriminator Network

D(z ;d)

FC

P(z)

Fig. 1. Illustration of the network architecture used for NIR image colorization.

The generator (G) and discriminator (D) are both feedforward neural net-
works that play a min-max game between one another. The generator takes as
an input a near infrared image patch of 64×64 pixels, and transforms it into the
form of the data we are interested in imitating, in our case a RGB image. The
discriminator takes as an input a set of data, either real image (z) or generated
image (G(z)), and produces a probability of that data being real (P(z)). The
discriminator is optimized in order to increase the likelihood of giving a high
probability to the real data (the ground truth given image) and a low probabil-
ity to the fake generated data (wrongly colored NIR image), as introduced in
[12]; thus, it is formulated as follow:

5θg
1

m
[logD(x(i)) + log(1−D(G(z(i))))], (1)

where m is the number of patches in each batch, x is the ground truth image
and z is the colored NIR image generated by the network. The weights of the
discriminator network (D) are updated by ascending its stochastic gradient.
On the other hand, the generator is then optimized in order to increase the
probability of the generated data being highly rated:

5θg
1

m

m∑
i=1

log(1−D(G(z(i)))). (2)
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Fig. 2. Pair of images (1024×680 pixels) from [14], urban category: ((top) NIR images
to colorize; (bottom) RGB images used as ground truth.

where m is the number of samples in each batch and z is the colored NIR image
generated by the network. Like in the previous case, the weights of the generator
network (G) are updated by descending its stochastic gradient.

4 Experimental Results

The proposed approach has been evaluated using NIR images and their cor-
responding RGB obtained from [14]. The urban category has been considered;
it contains 116 images of (1024×680 pixels). From these images 64,200 pairs of
patches of (64×64 pixels) have been cropped both, in the NIR images as well as in
the corresponding RGB images. Additionally, 12,800 pairs of patches of (64×64
pixels) have been also generated from the given urban dataset for validation.
It should be noted that images are correctly registered, so that a pixel-to-pixel
correspondence is guaranteed.

The GAN network proposed in the current work for NIR image colorization
has been trained using a 3.2 eight core processor with 16Gb of memory with a
NVIDIA GeForce GTX970 GPU. On average every training process took about
8 hours. The obtained results (RGBNIR) where qualitatively and quantitatively
evaluated with respect to the corresponding RGB images provided in the given
data set, which are used as ground truth (RGBGT ). The quantitative evaluation
consists of measuring at every pixel the angular error between the obtained result
(colorized NIR image) and the corresponding RGB image provided in the given
data set as ground truth values:

AngularError = cos−1

(
dot(RGBNIR, RGBGT )

norm(RGBNIR) ∗ norm(RGBGT )

)
(3)
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Fig. 3. Set of good results obtained from the proposed approach (average color
angular error: 5.7 degrees): (top) Original NIR patches to be colorized (64 × 64
pixels); (middle) Results from the proposed approach; (bottom) Ground truth images.

This angular error is computed over every single pixel of the whole set of
images used for validation, obtaining the following results: mean angular er-
ror=9.86 degrees; standard deviation=5.31 degrees. As aforementioned, these
are mean values, so in order to visually appreciate these results, two sets of
image patches colored with the proposed approach have been generated—due
to space limitation just three images per set are presented1. In the first family,
patches with small angular error are presented (in this case average angular er-
ror is below to 6 degrees), see Fig. 3. In the second family, patches with larger
angular errors are depicted (in this case average angular error is higher than
15 degrees), see Fig. 4. In this second case, although the angular error is larger
than before, the global color is some how obtained; the main problem with these
patches lies on the texture present in the scene.

1 The whole set of image patches used for training and validation, as well as the
obtained results, are available by contacting the authors.
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Fig. 4. Set of bad results obtained from the proposed approach (average color
angular error: 15.28 degrees): (top) Original NIR patches to be colorized (64× 64
pixels); (middle) Results from the proposed approach; (bottom) Ground truth images.

5 Conclusions

This paper tackles the challenging problem of NIR image colorization by using
a novel Generative Adversarial Network architecture model. Results have shown
that in most of the cases the network is able to obtain a reliable RGB represen-
tation of the given NIR image. Future work will be focused on evaluating others
network architectures, like autoencoders, which have shown appealing results in
recent works. Additionally, increasing the number of images to train, in partic-
ular the color variability, will be considered. Finally, the proposed approach will
be tested in other image categories.

Acknowledgments This work has been partially supported by the ESPOL
projects: ”Pattern recognition: case study on agriculture and aquaculture” (M1-
DI-2015) and ”Integrated system for emergency management using sensor net-
works and reactive signaling” (G4-DI-2014); and by the Spanish Government
under Project TIN2014-56919-C3-2-R.



Learning to Colorize Infrared Images 9

References

1. Larsson, G., Maire, M., Shakhnarovich, G.: Learning representations for automatic
colorization. In: European Conference on Computer Vision, Springer (2016) 577–
593

2. Cheng, Z., Yang, Q., Sheng, B.: Deep colorization. In: Proceedings of the IEEE
International Conference on Computer Vision. (2015) 415–423

3. Zhang, R., Isola, P., Efros, A.A.: Colorful image colorization. In: European Con-
ference on Computer Vision, Springer (2016) 649–666

4. Oliveira, M., Sappa, A.D., Santos, V.: Unsupervised local color correction for
coarsely registered images. In: Computer Vision and Pattern Recognition (CVPR),
2011 IEEE Conference on, IEEE (2011) 201–208

5. Oliveira, M., Sappa, A.D., Santos, V.: A probabilistic approach for color correction
in image mosaicking applications. IEEE Transactions on Image Processing 24
(2015) 508–523

6. Welsh, T., Ashikhmin, M., Mueller, K.: Transferring color to greyscale images. In:
ACM Transactions on Graphics (TOG). Volume 21., ACM (2002) 277–280

7. Zbontar, J., LeCun, Y.: Stereo matching by training a convolutional neural network
to compare image patches. arXiv preprint arXiv:1510.05970 (2015)

8. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan,
D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. CoRR
abs/1409.4842 (2014)

9. Aguilera, C.A., Aguilera, F.J., Sappa, A.D., Aguilera, C., Toledo, R.: Learning
cross-spectral similarity measures with deep convolutional neural networks. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops. (2016) 1–9

10. Iizuka, S., Simo-Serra, E., Ishikawa, H.: Let there be Color!: Joint End-to-end
Learning of Global and Local Image Priors for Automatic Image Colorization with
Simultaneous Classification. ACM Transactions on Graphics (Proc. of SIGGRAPH
2016) 35 (2016)

11. Limmer, M., Lensch, H.: Infrared colorization using deep convolutional neural
networks. arXiv preprint arXiv:1604.02245 (2016)

12. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., Bengio, Y.: Generative adversarial nets. In: Advances in neural
information processing systems. (2014) 2672–2680

13. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.:
Improved techniques for training gans. In: Advances in Neural Information Pro-
cessing Systems. (2016) 2226–2234
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