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Abstract— Crop monitoring and diagnosis are crucial for 

efficient agricultural production, and unmanned aerial vehicle 
(UAV) Remote Sensing can assist in achieving this goal. This 
article offers an automated Systematic Literature Review 
(SLR) of UAV Remote Sensing for crop monitoring and 
diagnosis. This review analyzes the primary scientific 
applications and trends in this area using Deep Learning 
techniques to automatically select relevant articles and validate 
them through full reading. The SLR collected over 800 papers, 
of which 64 met the selection process. The articles selected by 
Deep Learning classifiers were successfully cataloged with high 
accuracy in pre-selecting articles for review. F1 scores of 93% 
were achieved in tests with unpublished examples for the 
classifier model. The review of the 64 primary studies reported 
a peak in UAV Remote Sensing applications in 2020, attributed 
to the increasing diffusion of precision farming practices with 
technological equipment. The UAV Remote Sensing 
application objectives included crop monitoring, pest and 
disease detection, yield prediction, and plant nutrition. 
Artificial Intelligence, particularly Machine Learning and 
Deep Learning, are widely used for UAV Remote Sensing 
analysis. The NDVI is the most applied vegetation index for 
crop condition assessment and monitoring. The proposed 
solution for automating the literature selection process for 
precision agriculture-related scientific articles can be used in 
other areas that require extensive literature review.  

Keywords: UAV images, Crops, Remote Sensing, Vegetation 

index, Deep Learning. 

I. INTRODUCTION  

Crop monitoring and diagnosis are essential to ensure 
productivity and efficiency in agricultural production [1]. 
With the advancements in technology, there are various 
technologies and tools to perform these tasks more 
efficiently and accurately, such as the use of images captured 
by unmanned aerial vehicles (UAV) [2]. 

UAV images offer multiple advantages for crop 
monitoring, including obtaining high spatial resolution aerial 
images, broader coverage of the study area, and capturing 
images at different times of the day to generate maps and 
models that facilitate decision-making [3] [4]. 

In this sense, a bibliographic review is a valuable tool to 
understand a specific state of the art. It allows for collecting, 

analyzing, and synthesizing published literature on that 
subject at a particular point in time. However, selecting 
articles presents limitations since it is a manual task requiring 
knowledge and expertise from researchers. This can be a 
laborious and time-consuming process, as repositories 
contain a large number of articles. In addition, the manual 
selection process can also be subject to human errors, and it 
can be challenging to ensure that all relevant papers have 
been identified [5]. 

The process begins with identifying keywords, which are 
set to be searched in different databases and result in 
hundreds of articles that must be evaluated to determine their 
relevance. Different criteria are used to select articles, 
including reading the titles, abstracts, and keywords, and 
once a list of relevant articles has been selected, the full 
documents are read. The selection of the most relevant 
articles in the study area lets to obtain accurate and reliable 
results. 

With this background, this document proposes a 
Systematic Literature Review (SLR) on using UAV Remote 
Sensing for crop monitoring and diagnosis to analyze the 
main scientific applications and trends in this area. To do 
this, automatic article selection was applied using Deep 
Learning techniques, and the selected articles were validated 
through full reading. With this, it is expected to provide a 
valuable and updated tool for research and decision-making 
in agriculture. 

II. METHODOLOGY 

To conduct the SLR, the process proposed in [6] was 
adapted (Fig. 1). The first step was to define the research 
questions, followed by defining the relevant keywords and 
repositories for data acquisition. Once the articles were 
obtained, the selection criteria were defined. In the next step, 
data mining was performed to discover patterns in the 
dataset, followed by classification to categorize or label data 
based on its features. Finally, data extraction was carried out 
to fill in the adapted form. 

A. SLR Research Questions 

The SLR aims to review published studies on the 
different applications of UAV imagery in crops. The research 
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questions were formulated according to the purpose of the 
present study (Table 1) and were answered by selecting and 
analyzing primary studies. 

 
Fig. 1. SLR process used in this study. 

TABLE 1. LIST OF RESEARCH QUESTIONS 

No Questions 

RQ1: What crops have been studied using UAV Remote Sensing data? 

RQ2: What are the objectives of UAV Remote Sensing applications in 

crops? 

RQ3 What technologies are adopted for UAV Remote Sensing 

applications in crops? 

RQ3.1 What type of UAV was adopted for capturing aerial images? 

RQ3.2 In what spectral bands are aerial images typically analyzed? 

RQ4 What are the techniques adopted to analyze aerial imagery data? 

RQ4.1 What specific data analytics tasks have been targeted in using these 

images? 

RQ5 What vegetation indices have been used in these studies? 

 
The first research question aims to identify crop types 

that the primary studies analyzed. The second question aims 
to determine the purpose of UAV Remote Sensing 
applications in crops. To comprehend the applications of 
UAV Remote Sensing in crops, it is essential to understand 
the associated technologies, including the type of drones and 
spectral bands used. Understanding of the latest techniques 
and tasks for analyzing aerial image data is crucial; as it can 
significantly impact the quality of extracted information, 
particularly for addressing the third and fourth research 
questions. Lastly, the fifth research question aims to identify 
the vegetation indices used in primary studies as indicators of 
vegetation health. 

B. Data Acquisition 

An electronic search was conducted in high-quality 
articles databases such as ACM Digital, IEEE Explorer, 

Science Direct, Scopus, Springer, and Taylor and Francis to 
identify potential studies that could address the research 
question. The search was limited to a six-year interval, i.e., 
articles published since 2017, to ensure that the information 
is as up-to-date as possible in agriculture. The keywords used 
in the electronic search included agriculture, UAV images, 
drone, and Remote Sensing.  

The automatic article search provided approximately 900 
journal articles, conference articles, and book chapters. To 
select studies relevant to the present research, the criteria 
outlined in Table 2 were applied to filter the results. 

TABLE 2. SELECTION CRITERIA  

No Criteria 

C1 Papers full text available. 

C2 Papers written in English. 

C3 Non-duplicated papers across different 

repositories. 

C4 Papers published in a scientific journal. 

C5 No review articles, surveys, or abstract 

compilations. 

C6 Applied research papers. 

C7 Papers that address applications in crops. 

C8 Papers that use UAV aerial imagery. 

 

After applying the criteria C1 - C5 on a quick glance at 
the titles and descriptions, 734 articles were filtered. Table 3 
shows the distribution of these articles in different databases, 
with Scopus containing the highest number of articles (182), 
and Taylor and Francis containing the lowest number of 
articles (3). 

C. Data Mining 

Once the criteria were applied, part of the resulting data 
was manually labeled by an expert into three levels of 
relevance (high, medium, and null) using an empirical 
paradigm based on his evaluation of each article. This 
manual labeling process took three weeks to complete. This 
was a time-consuming and exhaustive process that led to a 
dataset of 40 labeled articles. However, the limited size of 
the resulting labeled dataset posed a challenge for training. 
To address this, an objective technique for labeling scientific 
articles was employed to increase the training dataset’s size. 
The technique involved creating synthetic data points using 
an ad hoc metric that combined three thresholds. 
Specifically, the metric was calculated as follows: 

Ad hoc metric = (number of citations × impact factor) / 

(years since publication) 

 
This ad hoc metric formula was chosen due to its 

simplicity and that by analizing its distribution was found to 
be leptokurtic and positively skewed, which aligns with the 
reality that most published works do not reach the pinnacle 
of the scientific community in terms of the number of times 
they are referenced, longevity, and impact on the journal 
where they were published. 

To extract key information for the metric, including 
publication year, journal name, and number of citations, a 
metadata mining process that utilizes the Crossref API was 
employed. Specifically, each article's DOI was passed 
through the API to obtain these metrics and calculate the ad 
hoc metric. In the end, this technique helped to increase to 84 
labeled articles, where there exists a strong correlation 
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between the ad hoc metric and the classification labels 
assigned by the experts. 

D. Classification 

After cleansing the data in the most conservative way, the 
text representation is carried out by the pre-trained FastText 
model, which is a powerful text representation model that 
can capture the semantic relationships between words by 
breaking them down into subwords [6], and it was used to 
generate feature vectors for each article's abstract.  

The final module corresponds to the classification of the 
text using a 1D CNN. The feature vectors generated by 
FastText were allocated in a matrix of 84 (training data) by 
13000 (maximum text sequence size) that was fed into a 1D 
CNN to classify the articles into one of the three levels of 
relevance. The 1D CNN obtained 84% accuracy and it was 
trained using a cross-entropy loss function, 22 epochs, batch 
size 21 and Adam as the optimizer. 

The model was executed to classify the 734 articles, 
which led to the preselection of 129 articles classified as 
high. Later an expert read their abstracts and selected 73 of 
those articles as highly relevant, at this stage the expert also 
applied the criteria C6 - C8. Finally, three experts thoroughly 
read the 73 full documents, which took one month to 
complete, selecting 64 final articles. Further experimentation 
was carried out using the same classification methodology, 
but this time training with 30% of the 129 articles review by 
the expert into only two levels of relevance: high and low, 
and it was not necessary to use synthetic labeling as before, 
producing 82 articles (Table 3). This experimentation was 
carried out with the objective of determining if the reading 
process of the three experts could be reduced. 

TABLE 3. OVERVIEW OF THE SEARCH QUERY AND SELECTION PROCESS   

Database 
Automated 

search 

Manual 

selection 

criteria 

Automatic 

selection 

criteria 

ACM Digital 77 0 0 

IEEE 

Explorer 
154 0 2 

Science 

Direct 
147 18 21 

Scopus 182 38 50 

Springer 161 7 8 

Taylor and 

Francis 
13 1 1 

Total 734 64 82 

 

E. Data Extraction  

To extract information from the primary studies, a form 
based on previous research [7], was used. To do this, some 
articles were read randomly to identify the most relevant 
parameters. This process was interactive since, as the reading 
of the articles progressed, new parameters were determined 
for the form. A total of 64 primary studies [1-4], [8-67] were 
analyzed using this form to answer the research questions.  

The form included general information such as DOI, 
URL, title, year, citations, journal, journal ISSN, repository, 
authors, author affiliation, and research country. Specific 
information about the study was also recorded, such as the 
type of crop and field, objectives of the research, goals of 
aerial imagery applications, flight planning/mission control, 
image preprocessing software, sensor model, drone model, 

drone type, spectral bands, vegetation indices, technique, 
architecture/model, data analytics task.  

III. RESULTS 

This section presents the results of extracting information 
from the 64 primary studies. To provide insight into the 
research questions, a descriptive statistic summarizes the 
general information. This statistic enables a better 
understanding of the underlying data and conveys essential 
information relevant to the research. 

A. General Statistics  

The distribution of primary studies from 2017 to 2022 
shows a remarkable increase starting from 2018, reaching a 
peak of 17 publications in 2020 (Fig. 2). A decrease in 
publications is observed from 2021. In 2022 only 10 
publications were recorded, possibly due to the analysis 
cutoff date being in June. However, this data was included, 
given the relevance of understanding the trends regarding 
applications and techniques used for UAV image analysis. 

 

Fig. 2. Year of publication of primary articles. *Cutoff analysis date June 

2022. 

According to Fig. 3, China and the USA have contributed 
the most, with 18 and 12 papers, respectively. Brazil and 
Spain follow with four papers each, while Australia and 
France each have three papers. Additionally, two papers 
were contributed by Canada, Italy, Mexico, South Korea, and 
Switzerland. 

 
Fig. 3. Number of studies per country. 
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Fig. 4 illustrates that the Remote Sensing journal has 
published the most studies related to applications and trends 
in using UAV images for monitoring and diagnosing crops, 
with 18 papers. Precision Agriculture follows with seven 
papers, while Agronomy and Computers and Electronics in 
Agriculture have six papers, and Sensors has three papers. 
According to Fig. 5, the most cited papers, with more than 
200 citations, are [39], [45], [61]. Moreover, [14], [29], [62] 
have received over 100 citations, while [24], [9], [66], and 
[23] have less than 100 citations. 

 
Fig. 4. Top five publication journals. 

 
Fig. 5. Top ten cited papers. 

B. RQ1: What crops have been studied using UAV Remote 

Sensing data? 

For the analysis, nine types of crops were classified 
according to their use. Additionally, studies that analyzed 
more than two crops were grouped into a single category 
called “different crops”. As shown in Fig. 6, the most studied 
crops were cereals, with 21 documents. This category 
encompasses crops, such as corn, wheat, oats, sorghum, and 
rice. Followed by fruit trees and studies analyzing more than 
two crops, with 12 documents. Notably, two studies [66] and 
[38] analyzed 15 and 6 crops, respectively. On the other 
hand, oil crops, tubers and root vegetables, fiber crops, grass, 
other crops, and bulb vegetables were less represented. 
Specifically, the “other corps” category comprised [1] and 
[35], which studied spinach and lemon myrtle, respectively. 

Table 4 displays that China strongly emphasizes the 
study of cereals, with most of their analyses centered around 
wheat (8 out of 13 articles). In contrast, the USA primarily 
directs their research toward fruit trees, particularly citrus, 
wine grape, and apple. On the other hand, countries such as 
France and Spain concentrate on different types of crops, 
such as fruit crops and the different crops category. 

 

 
Fig. 6. The number of primary studies according to their crop type analysis. 

 

TABLE 4. CORRELATION BETWEEN THE CROP TYPE AND THE TOP FOUR 

COUNTRIES  

Crop type 
Country 

China USA Brazil Spain 
Bulb vegetables - - - 1 

Cereals 13 1 1 0 
Different crops 3 2 1 1 

Fiber crops - 2 - - 
Fruit crops - 5 1 2 

Grass - - - - 
Oil crops 1 1 1 - 

Other crops - - - - 
Tubers and root vegetables 1 - - - 

Vegetables - 1 - - 

 

C. RQ2: What are the objectives of UAV Remote Sensing 

applications in crops? 

In the analysis of the primary studies, seven objectives 
were identified according to their applications in an 
agricultural context. Table 5 presents the number of 
documents associated with each year and the objective, while 
Table 6 illustrates the relationship between the crop type and 
the identified objectives. The most found objective is O1: 
Crop monitoring, followed by O6: Pest and disease 
detection, O5: Irrigation management, and O7: Controlling 
environmental field. It is also possible to observe that the 
study of cereals predominates in objectives O1 and O6, 
followed by the category of different crops analyzed in O1 
and O5 and fruit crops that dominate in applications of O1 
and O2. 

TABLE 5. CORRELATION BETWEEN THE YEAR AND THE OBJECTIVES FOR 

UAV REMOTE SENSING APPLICATIONS. 

Year 
Objectives  

O1 O2 O3 O4 O5 O6 O7* 

2017 1 - - 1 1 1 1 

2018 5 1 - - - 1 2 

2019 5 4 - - 1 - - 

2020 6 4 1 2 3 2 3 

2021 7 1 - 1 1 4 1 

2022 2 - - 1 3 3 2 

*O1: Crop monitoring, O2: Pest and disease detection, O3: Mapping of 
crops, O4: Estimation of crop production, O5: Irrigation management, O6: 
Fertilizer management, O7: Controlling environmental field. 
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TABLE 6. CORRELATION BETWEEN THE CROP TYPE AND THE OBJECTIVE FOR 

UAV REMOTE SENSING APPLICATIONS. 

Crop type 

Objectives 

O1 O2 O3 O4 O5 O6 O7 

Bulb vegetables 1 - - - - - - 

Cereals 8 3 - 4 2 7 2 

Different crops 5 - 1 - 3 1 2 

Fiber crops 2 - - - - - - 

Fruit crops 5 3 - - 2 1 2 

Grass 1 - - - - 1 
 

Oil crops 3 - - 1 1 - 2 

Other crops 1 1 - - - - - 

Tubers and root vegetables - 1 - - - 1 1 

Vegetables - 2 - - 1 - - 

 

D. RQ3: What technologies are adopted for UAV Remote 

Sensing applications in crops? 

The analysis of technologies used in the primary studies 
included identifying UAV types and spectrum regions. Based 
on the analysis, multirotor drones and sensors based on the 
Visible light and Multispectral bands were preferred, with 20 
and 15 papers, respectively. Four papers utilized 
Hyperspectral sensors, while other studies used a 
combination of two types of sensors, with three papers each 
for capturing both Visible light + Color-infrared and Visible 
light + Multispectral data. On the other hand, fixed-wing 
drones were primarily equipped with the combination of 
Visible light + Color-infrared sensors. Table 7 provides a 
detailed summary of the technology preferences observed in 
the primary studies. 

TABLE 7. TOP FIVE CORRELATION BETWEEN THE SPECTRAL BANDS AND THE 

UAV TYPE. 

Spectral bands Multirotor Fixed-wing 

Visible light 20 0 

Multispectral 15 0 

Hyperspectral 4 0 

Visible light + Color-infrared 3 6 

Visible light + Multispectral 3 0 

 

1) RQ3.1: What type of UAV was adopted for 
capturing aerial images? 

A preference for Multirotor drones is observed, as they 
were in 52 studies out of the 64 studies, while fixed-wing 
drones were only mentioned in eight papers. The reason for 
this preference is not explicitly stated in the studies. Still, it 
could be attributed to factors such as higher payload capacity 
as in [11] and [12], who used multisensory systems for 
image capture (Visible light + Multispectral + Thermal 
infrared), as shown in Fig. 7. 

2) RQ3.2: In what spectral bands are aerial images 
typically analyzed? 

The knowledge of the spectral bands most used in the 
primary studies provides insights into the most relevant 
information for crop analysis. As shown in Fig. 8, the 
analysis reveals that Visible light and Multispectral are the 
most used spectral regions, with 22 and 15 documents, 
respectively. Sensors capturing green, red, and near-infrared 
bands are also prevalent, with nine papers. In contrast, 
Hyperspectral sensors and the combination of Visible light + 

Multispectral sensors are identified in four and three 
documents, respectively. The limited use of hyperspectral 
sensors could be attributed to their high cost, as most studies 
mainly propose using low-cost sensors. 

 
Fig. 7. Types of UAVs used in the primary articles. 

 
Fig. 8. Top five spectral bands applied for the analysis. 

E. RQ4: What techniques are adopted to analyze aerial 

imagery data? 

The analysis shows that the most used techniques for 
UAV image analysis are Artificial Intelligence (AI), 
Machine Learning, and Deep Learning, with 20 and 16 
papers, respectively. Statistical analysis is also used in ten 
documents. In addition, some studies propose combinations 
of techniques such as Machine Learning + Deep Learning 
and Computer Vision + Machine Learning (Fig. 9). 

 
Fig. 9. Top five techniques applied for UAV image analysis in an 

agricultural context. 

1) RQ4.1: What specific data analytics tasks have been 
targeted in using these images? 

Applying techniques and tools to analyze large data sets 
and extracting information helps make informed decisions. 
Based on the primary studies analyzed, the most used 
analysis tasks are Classification and Regression, with 21 and 
20 documents, respectively. These are followed by 
Prediction, Descriptive analytics, and Semantic segmentation 
task with 5, 3, and 2 papers, respectively (Fig. 10). 
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Fig. 10. Top five of the most used data analytics task. 

F. RQ5: What vegetation indices have been used in these 

studies? 

Regarding the analysis of the vegetation indices (VI) 
used in the primary studies (Fig. 11), it can be observed that 
the NDVI (Normalized Difference Vegetation Index) is the 
most used index, appearing in 19 documents. Following 
closely behind are the GNVI (Green Normalized Vegetation 
Index) and NDRE (Normalized Difference Red Edge), with 
13 and 10 papers, respectively. The ExG (Excess Green) and 
SAVI (Soil-Adjusted Vegetation Index), are the least utilized 
VIs, found in only 9 documents. 

 
Fig. 11. Top five of the most used vegetation indices in the selected studies. 

The analysis of the number of VIs used (Fig. 12) reveals 
that some studies have analyzed more than 30 VIs. For 
instance, study [50], analyzed 35 VIs, while [19] and [52] 
analyzed 33 VIs. On other hand, [9] and [22], analyzed with 
24 and 20 VIs, respectively. 

IV. GENERAL DISCUSSION 

SLR consists of three main steps: data acquisition, 
extraction, and information synthesis. However, it is a highly 
manual, time-consuming, and error-prone process that 
requires at least two experts [68]. The data acquisition phase, 
which entails selecting primary articles from a large pool of 
potentially relevant ones, is one of the most challenging and 
time-consuming aspects of the process [69]. To select 
primary articles, experts must read through the titles and 
abstracts of many potential articles, which demand a 
significant investment of time. In this regard, the proposed 
automated methodology for conducting an SLR on precision 
agriculture using UAV images and deep learning classifiers 
has been successful. The classifier model for three levels and 
the model with two categories achieved F1 scores of 87% 
and 93%, respectively, in tests with 15 unpublished 
examples. This finding highlights the proposal's 
effectiveness in selecting primary articles for SLR, resulting 

in a high level of accuracy while reducing the time required. 
Nonetheless, even with a low error rate, it is still imperative 
to have expert validation to ensure a precise analysis of the 
primary articles. 

This SLR focused on UAV Remote Sensing applications 
for crop monitoring and diagnostics. More than 900 papers 
were collected, but only 64 met the selection criteria through 
a semiautomatic classification and a manual process. It is 
important to remark that the classification process not just 
filtered the top documents based on the ad hoc metrics, but it 
learnt patterns in the text and helped to discover papers with 
a low ad hoc metric but a high relevancy, which later were 
validated by experts. For example, out of 239 papers with an 
ad hoc metric of 0, 26 were classified as high. Similarly, 
among 321 papers with a metric ranging from 1 to 25, 58 
were classified as high. On the other hand, 13 papers of the 
35 with the highest metrics were classified as high (Fig. 12). 

 

Fig. 12. Frequency distribution of articles based on ad hoc metric values 

across intervals for the 734 potential articles (blue) vs 129 classified as high 

by the CNN (red). 

The number of studies reporting on agricultural 
applications has increased since 2018, peaking in 2020. This 
can be attributed to the growing popularity of precision 
farming practices using technological equipment [70].   

 
Fig. 13. Top five regarding the number of vegetation indices in the selected 

studies. 

The general statistics reveal that China and the USA have 
the highest number of publications, which aligns with Japan's 
National Institute of Science and Technology Policy 
(NISTP) due to both countries' investments in the business 
sector and academia. On the other hand, the analysis of crop 
types reveals that cereals are the most studied, followed by 
the categories of different crops and fruit trees. The same 
analysis shows that China focuses its scientific activity on 
studying cereals, mainly wheat; this can be attributed to 
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China being the world's largest producer and consumer of 
wheat, producing approximately 17.5% of global production 
with over 128 million metric tons [71]. Meanwhile, the USA 
studies fruit trees such as apples, citrus, and grapes. These 
products are marketed nationally and internationally, 
significantly contributing to the country's economy. 
Furthermore, fruit production is a significant part of the food 
industry in the United States [72].  

Some studies provide information on agricultural 
practices, such as [73] focused on Machine Learning 
applications in agriculture and [74] focused on the role of 
IoT in agriculture. However, their approach does not 
consider the different applications of UAV Remote Sensing 
in an agricultural context. The use of UAV Remote Sensing 
for crop monitoring, pest and disease detection, yield 
prediction, and plant nutrition, to name a few, is of 
significant interest due its contribution to sustainable [75], 
and environmentally friendly production.  

Since technologies applied to crops are constantly 
evolving and advancing, it is important to keep up with 
trends and the latest advanced technologies can improve 
productivity and efficiency [76]. The type of drone and the 
spectral bands used in the primary studies were analyzed for 
a more detailed review. Multirotor drones and sensors based 
on visible light bands were found to be highly preferred due 
to their low cost and wide availability in the market, it is 
understandable that there is a preference for this type of 
sensor [7]. However, it should be noted that results of 
advanced experimentation based on expensive equipment are 
difficult to apply in real crops. 

Artificial Intelligence techniques such Machine Learning 
and Deep Learning are widely used due to their great 
potential in agriculture, and they must work with large 
volumes of data easily accessible through UAVs [77]. 

Among the techniques applied for UAV remote sensing 
analysis, vegetation indices are considered an important 
method for crop condition assessment and monitoring. NDVI 
is the most widely applied and used index [78], due to the 
generation of low-cost images it generates. However, 
researchers often supplement their studies with additional 
VIs to ensure a comprehensive analysis, as a single index 
may not always be sufficient [79]. 

V. CONCLUSIONS 

This article proposes a methodology towards automating 
the literature review process for precision agriculture-related 
scientific articles using a deep learning-based classifier, 
which in its first iteration, categorizes articles into three 
levels of relevance, then it only classifies the articles in two 
levels. The predictions demonstrate a promising approach for 
automating the time-consuming literature review process in 
precision agriculture, enabling researchers to efficiently 
identify and prioritize relevant articles for further analysis. 
Furthermore, the proposed solution can also be applied to 
other areas that require extensive literature review, offering 
a valuable contribution to the scientific community.  

In future works an Exploratory Data Analisys and a 
simple classifier based on Machine Learning is proposed to 
be implemented in order to find the best parameters for 
determining the ad hoc metric. 

Manually selecting papers based on the ad hoc metric 
would result in the discarding of some documents of high 

relevance. On the contrary, Fig. 12 shows that the 
implemented classifier included these documents as part of 
the 129 papers with high value. Additionally, these papers 
provided an important input for choosing the final 64 
manually selected papers. The results of the second 
classification (automatic selection criteria trained with 30% 
of the 129 articles) suggest that the reading process of the 
three experts could be reduced. This is because this second 
classification produced 82 papers, which included the 64 
manually selected papers. 

The study involved SLR from 64 primary studies from 
high-impact journals, analyzing and discussing the different 
crop applications. Twenty-five parameters were identified in 
the form used to extract information from primary studies. 
The study highlights the usefulness of UAV imagery for crop 
monitoring and diagnostics. Its adoption has increased since 
2018 due to precision agriculture practices and advanced 
technologies. UAV Remote Sensing has several objectives, 
including crop monitoring, pest and disease detection, yield 
prediction, and plant nutrition. Artificial intelligence, 
specifically Machine Learning and Deep Learning, is widely 
used to analyze the large volumes of data generated by UAV 
imagery.  

Moreover, the primary studies emphasized the 
importance of vegetation indices, particularly NDVI, in 
assessing and monitoring crop conditions. Other indices 
complement the studies to provide a comprehensive insight 
into plants. The proposed approach can be extended to other 
areas requiring extensive literature review, thereby offering 
valuable contributions to the scientific community. 
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