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Abstract Sedan  Pickup Truck Van Flatbed+Trailer

The Multi-modal Aerial View Image Challenge - Classifica-
tion Track (MAVIC-C) continues to push the boundaries of
multi-modal object recognition by encouraging researchers
to innovate models that leverage both Synthetic Aperture
Radar (SAR) and Electro-Optical (EO) imagery. This paper
analyzes the outcomes of the new iteration of this challenge
and emphasizes the critical role of EO and SAR data fusion
in remote sensing tasks. This year MAVIC-C saw impres-
sive developments of sophisticated multi-modal approaches
that address the distinct properties and challenges inherent
to the data. This year’s challenge notably builds on insights
Jfrom previous iterates: in 2021 we demonstrated the poten-
tial of EO and SAR integration; in 2022 and 2023 we ex-
plored the capabilities of multi-modal frameworks; and in
2024 we examined model robustness in out-of-distribution
scenarios. This year, we started with the same challenge de-
sign as 2024 and asked teams to further advance techniques
for improving accuracy and of out-of-distribution detection,

Flatbed Truck Bus Pickup+Trailer Box Truck

which builds model robustness. Overall, this manuscript Figure 1. Example EO/SAR pairs for eight classes of data in the
provides an in-depth investigation of the methodologies of challenge dataset.

top-performing teams and analyzes participant’s perfor-

mance on a sequestered test set. sor (see rows 1 and 3 of Figure 1), the perspective from

aerial vehicles often results in limited sensor resolution, po-

tentially reducing targets to just a few pixels. This, along
1. Introduction with factors like varying illumination and atmospheric con-
ditions, demands robust OR models specifically designed to
handle the complexities of aerial imagery.

Synthetic Aperture Radar (SAR) offers a compelling so-
lution for its all-weather, all-time surveillance capabilities
as well as the resolution being independent of range. How-
ever, SAR data is not without its limitations (see rows 2 and
4 of Figure 1). Atmospheric conditions can introduce at-
tenuation, shadows can obscure targets, and multi-bounce
effects can complicate signal interpretation [14, 33]. In-
tegrating EO imagery with SAR data provides a powerful
means to overcome these challenges, but their fusion intro-
* equal contribution duces new difficulties.

The ability to accurately detect, identify, and classify ob-
jects within imagery is a cornerstone of modern remote
sensing (RS) applications. Object Recognition (OR) mod-
els, which strive to perform these tasks automatically and
are often built with Machine Learning (ML) models [2, 11],
may leverage a variety of RS modalities and play a cru-
cial role in the automatic exploitation of the data [28].
While OR shares similarities with traditional object detec-
tion tasks, its application to aerial platforms presents unique
challenges. As viewed with an Electro-Optical (EO) sen-
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Besides the properties of the sensing modalities, a key
challenge for effective OR algorithms is the ability to han-
dle out-of-distribution (OOD) samples - inputs that are
anomalous w.r.t. the training data - without compromising
in-distribution accuracy [12, 13]. In high-stakes scenarios,
misclassifications can have significant consequences. How-
ever, it is well known that ML models are bad at distinguish-
ing these confusing inputs [8], making OOD detection a
critical algorithmic challenge [9] and a key aspect of model
robustness. Often, ML practitioners tackle the robustness
challenge by providing credibility scores which indicate the
level of uncertainty associated with the prediction. Interest-
ingly, the 2025 MAVIC-C challenge operates at the cross-
roads of the aforementioned sensor modality issues and
OR algorithmic issues, and provides a valuable research-
playground for exploring how to develop highly-performant
and robust OR algorithms with multi-modal data.

This paper provides a comprehensive analysis of the new
iteration of the MAVIC-C challenge and builds on the re-
sults and experiences of the previous four years [22, 24-26].
Similar to the 2024 challenge, the 2025 version prioritizes
high classification accuracy and reliable OOD detection.
The challenge utilizes the UNIfied COincident Optical and
Radar for recognitioN (UNICORN-V2) dataset as a rigor-
ous benchmark for evaluating performance [26]. Uniquely,
this dataset offers paired SAR and EO images for 20 cate-
gories of objects, which are deliberately split into in distri-
bution detection (IDD) vs OOD sets across train, val, and
test partitions. Figure 1 shows example (EO, SAR) pairs
for several categories. This year’s results were particularly
interesting. We observed strong performance from the top
entrants who utilized new ML techniques to improve per-
formance by leveraging the multi-modal feature informa-
tion. Of particular note, this year we saw an improvement
in OOD detection scores yielding an improvement in robust
performance. Details on methodologies and quantitative re-
sults will be discussed in the following sections.

The remainder of the paper is organized as follows. Sec-
tion 2 provides key details of the 2025 challenge, including
dataset and category splits. Section 3 outlines the quantita-
tive results of the top-performing methods. Section 4 delves
into the details of the leading approaches. Finally, Section
5 concludes the paper with key takeaways and future direc-
tions.

2. Challenge

Accurately classifying objects from aerial imagery is cru-
cial for a wide range of applications, from environmental
monitoring to disaster response. The Multi-modal Aerial
View Image Classification Challenge (MAVIC-C) pushes
the boundaries of this field by focusing on the combined po-
tential of SAR and EO imagery. Building on the successes
of previous MAVIC-C and MAVOC challenges [22, 24—
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Figure 2. The aligned scene of the full UNICORN dataset before
chipping is performed [17].

26], the 2025 iteration emphasizes robust performance and
multi-modal learning. Participants grapple with the unique
properties of SAR data, particularly the presence of SAR
shadows and tilted perspectives, demanding innovative so-
lutions for robust SAR image classification. Similarly, the
challenge’s EO data is of low resolution and many of the
object categories are similar in nature, making for a fine-
grained recognition challenge.

Practically, the training and testing data are presented to
the OR model in image chips, meaning the localization step
has already happened and the ML-based OR model must
perform classification. Classifier performance is rigorously
assessed on traditional top-1% accuracy and also on the
ability to identify OOD samples, as measured by the Area
Under the Receiver Operating Characteristic (AUC) curve
[9].

2.1. The Train/Test Split

During the training phase, participants are given access to
(SAR, EO) pairs for the ten IDD object categories shown in
Table 1. We intuit that the combination of SAR and EO im-
agery for training can allow the OR models to learn useful
features from the multi-modal representations. In the test-
ing phase, participants are only given SAR data. By using
this framework the computational expense of the traditional
pre-processing can be eliminated while greatly improving
decision-making processes. The main challenge, however,
is working with a multi-modality training dataset and trying
to learn features from the SAR+EO data that can assist in
the SAR-only recognition.
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Table 1. Details of the UNICORN V2 Dataset used as the in-
distribution classes in this challenge (counts represent the number
of (EO, SAR) pairs).

Table 2. Details of the UNICORN V2 Dataset used as the out-of-
distribution classes in this challenge (counts represent the number
of (EO, SAR) pairs).

Class # Vehicle Type #Train  # Val # Test Class# Vehicle Type #Train  # Val  # Test
0 sedan 364,291 77 200 0 van w/ trailer - 77 -
1 N MY 43,401 77 200 1 other - 77 2000
2 pickup truck 24,158 77 200 2 dismount - 77 -
3 van 16,890 77 200 3 semi - 7 -
4 box truck 2,896 77 200 4 SUV w/ trailer - 77 -
5 motorcycle 1,441 77 200 5 flatbed truck w/ trailer - 77 -
6 flatbed truck 898 77 200 6 plane - 77 -
7 bus 612 77 200 7 bicyc]e - 24 _
8 pickup truck w/ trailer 695 77 200 8 dump truck - 77 -
9 semi truck w/ trailer 353 77 200 9 sedan w/ trailer - 77 -
Total 455,635 770 2000 Total - 647 2000
2.2. UNICORN V2 Dataset performance of the model in the face of unknowns. The

Last year the MAVIC-C challenge introduced the second
version of the UNIfied COincident Optical and Radar for
recognitioN (UNICORN V2) dataset [26]. The original
source dataset, UNICORN, was developed in 2008 and con-
tains both EO and SAR data. It was collected through large-
format sensors and sourced from aerial surveys over Day-
ton, OH. It contains Wide Area Motion Imagery (WAMI)
EO data and Wide Area SAR data [29]. The EO and SAR
data was rigorously aligned through both geo-registration
and homography techniques. It was then labeled by human
annotators and chipped for the challenge. Figure 2 shows
an overlay of the EO and SAR full scene data (note, the
chips in Figure | are contained within this figure). There
are 20 total categories of objects in UNICORN V2. The
top-10 most prevalent categories are used for the IDD set
and described in Table 1. The remaining 10 less-prevalent
categories are used for the OOD set and represent confusers.
These OOD classes are shown in Table 2. The dataset itself
is publicly accessible. The dataset was validated on models
from the 2022 challenge prior to being introduced.

2.3. Metrics & Evaluation

MAVIC-C challenge submissions are evaluated on two
main metrics: top-1 accuracy and AUC. The AUC provides
a nuanced measurement of the model’s ability to distinguish
OOD samples (unknowns) from In Distribution (ID) sam-
ples (knowns). AUC demonstrates the rate the model out-
puts true positives vs false positives using a 0 to 1 scale.
An AUC score close to 1 indicates the True Positive Rate
(TPR) is high and the False Positive Rate is low. Meaning
that most positives and negatives are being predicted cor-
rectly. Therefore, the closer the AUC is to 1 the better the
model is performing. AUC is meant to measure the robust
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other metric is of course a standard accuracy of the classifi-
cation model.

The final evaluation of contestant’s submission is a
weighted average of ID accuracy and OOD detection mea-
sured on a sequestered set of 4,000 total test images. Within
this test set there are 200 examples for each of the 10 ID
classes (so, 2000 total ID samples) and 2000 OOD samples.
The weighting of the final evaluation is as follows:

Score = (0.75 - Accuracy) 4+ (0.25 - AUC). (1)
Our idea behind the weighting is that if accuracy is too low,
the model will not be usable for target recognition by users.
So, in the scoring we give a higher weight to accuracy and
a slightly lower priority to OOD detection.

During the testing phase of the competition, teams are al-
lowed up to ten submissions per day. During the evaluation
phase, teams submit their label predictions and credibility
score to be evaluated on the competition server. Teams are
allowed up to 12 submissions, which prevents them from
effectively fine-tuning on the test dataset. Results are made
visible during both phases.

2.4. Challenge Phases

The challenge began in mid January 2025, and the test data
was released in late February 2025. The testing phase ended
on March 12, 2025 with team submissions finalized.

3. Challenge Results

The 2025 MAVIC-C challenge received substantial engage-
ment, affirming the community’s interest in developing
multi-modal solutions for OR in RS tasks. A total of 105
teams registered for participation. During the development
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Table 3. Top-10 Teams for 2025 MAVIC-C Challenge (bold represents best score, blue is second best).

Rank Team Total Score  Accuracy AUC
1 TongJi-CV 0.43 31.78 0.77
2 upb6 0.42 27.56 0.87
3 crys4al 0.41 29.61 0.76
4 momo-mo 0.41 28.78 0.76
5 shdsff 0.39 22.61 0.88
6 TianyiYu 0.39 22.83 0.87
7 FangzhouHan 0.37 20.06 0.88
8 HuangRoman 0.34 21.11 0.73
9 KNUNIST 0.34 22.39 0.68
10 Yc2 0.33 21.83 0.66
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Figure 3. Overview of the TongJi-CV architecture (1°* place overall).

phase, 36 of these teams submitted their algorithms for pre-
liminary evaluation. The participation slightly adjusted in
the testing phase, with 14 teams submitting valid algorithms
for rigorous assessment. Over the course of the challenge,
we received 1187 total submissions.

The results from the top-10 performers are shown in Ta-
ble 3. This year we saw comparable performance in ac-
curacy as last year but a notable improvement in OOD de-
tection (max AUC=0.88). Interestingly, the most accurate
models did not necessarily have the best OOD detection
scores. This indicates that there is still substantial room for
improvement in coming years and can only be explained by
parsing through the methodologies of the individual sub-
missions. As a highlight, this year we saw many exciting
and new approaches to the challenge which are leveraging
modern concepts in ML and Deep Learning (DL). For ex-
ample, top teams leveraged contrastive learning objectives,
feature matching terms, knowledge distillation, and vision
transformers. We leave it to the next section to discuss more
details.
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4. Challenge Methods

This section describes the methodologies from some of the
top performing teams. The descriptions have been adapted
from the individual author submissions and we thank them
for their willingness to contribute.

4.1. Rank 1: TongJi-CV
Team Members: Hongli Liu, Yu Wang and Shengjie Zhao

4.1.1. Overview

The Tongji-CV team proposes a cross-modal semi-
supervised collaborative optimization domain adaptation
framework to enhance transferable representations and gen-
eralization capability across heterogeneous modalities.

As illustrated in Fig. 3, the core process includes sev-
eral components. First, is a semi-supervised class-balanced
data partitioning and data augmentation strategy to handle
labeled and unlabeled data. Second, is a dual-stream feature
extraction network which adopts a dual-branch architecture
with Efficient-Net [34] and ResNet-50 [7] to extract local
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Figure 4. KNUNIST overview with knowledge distillation from EO to SAR. The EO encoder (teacher) is first pre-trained and frozen,
and then the SAR encoder (student) is trained with multiple components: classification loss, feature matching loss, contrastive loss, and

confidence prediction.

and global features from EO and SAR modalities. Third, is
a cross-modal contrastive domain adaptation module which
integrates contrastive loss to guide domain-invariant feature
learning. Finally, a category metric learning term ensures
accurate classification of aerial targets.

The Tongji team also utilizes Focal Loss [20] for classi-
fication optimization and Sliced Wasserstein Distance [30]
for cross-modal alignment. In the computation of cross-
modal alignment loss, weights of 0.8 and 0.2 are assigned
to supervised and unsupervised scenarios, respectively. The
model is first pre-trained on the EO dataset, and the learned
weights are transferred to the SAR task to acquire cross-
modal prior knowledge.

The Tongji model contains 46.54M parameters. It was
trained with a batch size of 64 using the AdamW optimizer
with learning rate set to le-3 and run for 100 epochs. Ad-
ditionally, to enhance model stability, Exponential Moving
Average (EMA) [1] and Gradient Clipping are employed
during training to prevent gradient explosion.

The experiments are conducted on two NVIDIA RTX
3090 GPUs (each with 24GB of VRAM), with a total train-
ing time of approximately 28 hours. Quantitative results
indicate that the Tongji-CV team achieved the best perfor-
mance in the SAR Classification track, with a Total Score
of 0.43 and a Top-1% Accuracy of 31.78%. These re-
sults demonstrate that the proposed method has achieved
state-of-the-art performance in SAR classification. Source
code can be found here: https://github.com/
HongliLiul/PBVS2025_SARClassification.
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4.2. Rank 9: KNUNIST

Team Members: Jeongho Min, Hyeonjin Kim, Jachyup
Lee and Jaejun Yoo

4.2.1. Overview

PBVS 2025 MAVIC-C uniquely provides pairs of EO and

SAR images during training and only SAR images during

testing. While SAR images have low resolution and noise

(e.g., speckle noise), EO images provide clearer structure

information. Previous studies have confirmed that using

SAR and EO together is better than using SAR images alone

for training OR models [25]. The KNUNIST team lever-

ages this feature by actively utilizing EO data to improve
the classification performance of SAR images. They adopt

a knowledge distillation framework in which the EO model

acts as a teacher, transferring that knowledge to the stu-

dent SAR model. As shown in Figure 4, their approach

addresses the domain gap between SAR and EO through a

multi-modal learning framework that combines classifica-

tion learning with feature alignment and contrastive learn-
ing.

This team’s main contributions are summarized as fol-
lows:

* They propose a feature matching approach based on max-
imum mean discrepancy (MMD). This aligns SAR fea-
tures with pre-trained EO features to transfer knowledge
across the modalities effectively;

* They utilize a contrastive learning objective to solve the
problem of high intra-class variation and inter-class simi-
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larity in SAR imagery, which enhances the model’s abil-
ity to discriminate between similar-looking objects from
different classes;

* Finally, they incorporate a confidence prediction mecha-
nism to handle OOD samples, improving the robustness
of the model when faced with ambiguous and noisy SAR
1nputs.

4.2.2. Proposed Approach

Architecture: The proposed architecture employs a
teacher-student framework with ResNet101[6] backbones
for both SAR and EO, as shown in Fig. 4. The EO model
serves as the teacher, guiding the student SAR model via
knowledge distillation. The EO encoder is first pre-trained
and then frozen during distillation training. A key com-
ponent of their approach is the confidence prediction head,
which estimates the reliability of each classification deci-
sion. The confidence prediction head mechanism is partic-
ularly useful for SAR images where noise and lower res-
olution can lead to uncertain predictions. The confidence
head provides uncertainty estimates that can be used to con-
trol the predictions of the model and improve its robustness.
By explicitly modeling uncertainty, this system can identify
when it is likely to make errors, especially in SAR images,
when speckle noise is severe and features are ambiguous.
The multi-component loss function consists of three main
terms:

Classification Loss: To address severe imbalances in the
dataset, they apply class weights with Cross-Entropy loss
to ensure that minority classes receive adequate attention
during training.

Feature Matching Loss (MMD): By aligning the feature
representations between the SAR and EO domains, they
support the SAR model in training more discriminative fea-
tures by mimicking the EO feature distribution. The authors
adopt the Generative Feature Matching Network (GFMN)
[32] method, which compares the statistical moments of the
feature distribution directly:

M
Lo = S ISR — O + o5 — EO2, (2)
j=1

where 11; and o; represent the mean and variance of features
extracted from layer j of their feature extractor network ¢.
This approach effectively transfers the rich structural infor-
mation from EO to SAR features by matching their statisti-
cal moments directly.

Contrastive Loss (SupCon): The third term is a supervised
contrastive loss to improve feature discrimination. This
learning draws features from the same class close to each
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other while separating features from different classes [16]:

Z log

pEP(i)

exp(z; - 2p/T)
ZaeA(i) exp(z; * 2a/T)
3)

Here, z; is the normalized feature of the i-th sample, P(7)
is the set of indices of samples in the same class as 7, A(7)
is the set of all indices except ¢, and 7 is the temperature
parameter. This is particularly important for SAR images
where intra-class variation is high and inter-class similar-
ity can be deceptive. Their specialized contrastive approach
uses hard negative mining with class balancing to focus on
the most challenging examples. The approach implements
varying degrees of attraction between samples: strong at-
traction between augmented views of the same image, mod-
erate attraction between different images of the same class,
and repulsion between samples from different classes, cre-
ating a more nuanced embedding space that better handles
the complexities of SAR imagery and ID vs OOD data.

Additionally, they incorporate a confidence prediction
mechanism [3] to handle OOD samples. The confidence
prediction is directly integrated with the classification pro-
cess, where the model’s confidence estimates modify the
classification outputs. For each prediction, the confidence
score determines how much the model relies on its predic-
tion versus the ground truth label during training:

S
»CSupCon = Z TH7 T
2. TP0)

§ = ¢ softmax(2) + (1 = ¢) - Yurue- “4)
Where c is the predicted confidence, z is the logit output,
and Yire 15 the ground truth label. The Eq. (4) formula-
tion enables the model to adaptively balance between its
predictions and the ground truth based on its confidence
level, preventing overconfidence in noisy regions of SAR
images. The confidence value can be interpreted as an un-
certainty score (where lower confidence indicates higher
uncertainty), providing valuable information about predic-
tion reliability. This uncertainty quantification is partic-
ularly beneficial for SAR imagery analysis, where image
quality variations can significantly impact classification re-
liability.

Overall, their training strategy includes EO pre-training,
adaptive confidence adjustment, class weighting to address
imbalance, and multi-GPU distributed training for effi-
ciency. They employ a two-stage training process: first, pre-
training the EO model on the EO images, then freezing the
EO encoder and training the SAR model with knowledge
distillation from the EO model.

Implementation Details: The authors used ResNet101
[6] for both teacher and student networks. Training was per-
formed with a batch size of 128 using AdamW optimizer on
NVIDIA A5000 GPUs with 24GB memory. The model em-
ploys class weighting to address imbalance and basic data
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augmentation techniques, including random cropping, flip-
ping, and rotation. The source code for our implementa-
tion is publicly available at: https://github.com/
PBVS2025/PBVS2025_kd.

4.3. Rank 12: kjhfkjn

Team Members: Xiaojie Liu

4.3.1. Proposed Approach

Dataset Curation: The team addresses challenges associ-
ated with the long-tail distribution problem and image sim-
ilarity issues in the training dataset. To mitigate these prob-
lems, they first use similarity measures to remove duplicate
images. Then, data augmentation techniques are applied to
increase the number of images in smaller categories, ensur-
ing a balanced dataset with 6000 images per class.
Methodology: Inspired by securing second place in last
year’s PBVS 2024 challenge [26], the team employs two
independent ViT-Base models to handle SAR and EO in-
puts, respectively. The final output is obtained by combin-
ing the predictions from both models using an ensemble ap-
proach. See Figure 5 for the architecture overview. Due
to the lack of EO data in the test set, the team uses the
pix2pixHD [36] model to generate EO data. A pretrained
model from the SAR translation competition (MAVIC-T
[27]) is fine-tuned on the training set and used to convert
SAR images in the test set into EO images. The codes
are available: https://github.com/kjhfkijn/
PBVS2025SARClassification.

‘ Linear

SAR — VIT —»’—> Head —»@—l
f v

(O— Result
pairwise distance Loss l
Focal loss
EO — VIT ﬁ_, Head —(x
‘ Linear

Figure 5. Overview of the kjhfkjn-architecture.

Loss Functions: Two loss functions are employed in
this approach. The first is a Focal Loss [21], which helps
address the long-tail distribution problem by focusing on
hard-to-classify examples. The second is a Pairwise Dis-
tance Loss, which synchronizes the feature distributions be-
tween SAR and EO domains. The pairwise distance loss
can lead to sparse features in the model, which may hinder
classification performance. Therefore, a coefficient of 0.1 is
applied to mitigate this issue.
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4.3.2. Hardware and Software

The team uses the following hardware and software tools in
this competition:

* Programming Language: Python 3.11

* Framework: PyTorch 1.10.0+cul13 Ubuntu22.04

e Hardware: RTX 4090, 24GB GPU, 32GB RAM

* Training Time: 5 hours

5. Conclusion

This year’s MAVIC-C challenge was a success! We had
105 teams participate in the competition and the winning
teams demonstrated very impressive results, in both clas-
sification and OOD detection metrics. Interestingly, the
methodologies employed by the top performers leverage
new and exciting components from several areas across the
deep learning community. We saw teams using combina-
tions of contrastive learning, feature matching losses, un-
certainty quantification techniques, specialized loss weight-
ings to account for data imbalance, vision transformer back-
bones, student-teacher knowledge distillation, and model
ensembling. Compared to last year, this year we saw a no-
table improvement in the OOD detection ability of methods,
leading us towards more robust and reliable OR models for
remote sensing in open-world environments.

Lastly, we give some comments on exciting new direc-
tions that future contestants and practitioners may consider
to advance the performance further. Foundation models are
a promising direction in many aspects [10, 18, 31]; they
improve transfer learning, low-shot learning, and their rep-
resentation quality can assist in OOD detection and general-
ization. Several recent advances in OOD detection, includ-
ing improved architectures may be considered [4, 15, 37].
Teams may consider variants of online learning to adapt
their offline-pretrained models to the test data distribution
on the fly, potentially with or without human assistance
[5, 19,23, 35].
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