
  

A Fault Tolerant Perception system for autonomous vehicles 
Miguel Realpe1,2, Boris X. Vintimilla1, Ljubo Vlacic2  

1. Escuela Superior Politécnica del Litoral, ESPOL, CIDIS - FIEC, Campus Gustavo Galindo Km 30.5 Vía Perimetral, Guayaquil, Ecuador 
E-mail: [mrealpe, bvintim]@fiec.espol.edu.ec  

2. Intelligent Control Systems Laboratory, Griffith University. Brisbane, Australia 
E-mail: l.vlacic@griffith.edu.au 

 
Abstract: Road driving environments are complex, unstructured and highly changeable. A safe driving is, thus, becoming quite 
challenging task, in particular from the view point of development and deployment of autonomous vehicles-based urban 
transport systems. In that context, the reliable perception appears as a one of the main enabling strategies in developing safe 
autonomous driving.  Currently, many autonomous vehicles are being tested on public roads with the objective of demonstrating 
the capability of operating in real world situations. A big effort has been focused towards creating fault-free autonomous 
vehicles.  Nevertheless, fault tolerant perception for autonomous vehicles still needs to be further developed in order to create 
autonomous vehicles capable of driving under real road traffic conditions since on-board vehicle sensors may fail due to bad 
calibration, erroneous readings,  physical or electrical failures, etc. A multi-sensor based vehicle architecture is a logical 
response to this issue. While the multi-sensor concept often relates to the strategy of using a variety of sensor types, this research 
has been focused on to the case when all sensors are vision sensors, either identical or different from each other. This paper 
proposes a Fault Tolerant Perception paradigm that deals with possible sensor faults by defining the Federated Data Fusion 
Architecture designed to detect a faulty sensor and reduce its impact on to the safe autonomous driving. The proposed 
architecture minimises the influence of faulty data allowing the system to enter in a tolerated error state, where a recovery action 
can be performed to avoid failures. The developed architecture was then adapted towards meeting requirements of the KITTI 
Vision Benchmark Suite. Experimental results demonstrated the feasibility of the developed fault tolerant perception paradigm 
to successfully detect early faulty data from a singular sensor and to minimise the influence of that faulty sensor in the fusion 
process. 
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 

1 Introduction 
The dependability of a system is the ability to perform 

complying time-related quality characteristics according to 
its specification when required. It is used as a collective term 
that includes availability, reliability, recoverability, 
maintainability, and maintenance support performance [1]. 
A threat is any event that negatively affects the 
dependability. It can be classified as faults, errors, or 
failures. A fault is active when it produces an error, 
otherwise it is dormant; a failure occurs if an error is not 
detected, resulting in an output that is inconsistent with the 
system specification. 

Causes of a fault can be either: software imperfections 
due to software aging or development mistakes; or hardware 
defects, such as production error, internal deterioration or 
external physical interference (electromagnetic, radiation, 
etc.). With respect to their appearance faults can be 
classified as hard and soft faults. Hard faults are presented 
in a stepwise form when data changes abruptly from its 
normal state to a faulty one, while soft faults are slow 
degradations in the data. As a consequence of active faults, 
the content or the timing of the output may deviates from 
implementing the system function, creating a failure.  

The period of delivery of a failed system is called service 
outage, whereas the transition back to the correct system is a 
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service restoration. In order to avoid service outage and to 
reduce service restoration to the minimum, dependability 
manages four different approaches: 
 Fault prevention. Means to prevent the incorporation of 

faults into the system. It is focused on good 
implementation techniques and development 
methodologies such as adaptability, modularity and 
interoperability. 

 Fault removal. Denotes the reduction of the number and 
severity of faults by applying preventive maintenance 
or by verifying that the system satisfies requirement 
properties (e.g. static analysis, model checking, testing) 
and then implementing corrections. 

 Fault forecasting. Means to estimate the present number 
of faults and their likely consequences. It usually 
applies to faults that cannot or should not be removed 
[2]; instead their influence is qualitatively or 
quantitatively assessed.  

 Fault tolerance. Denotes the capability of a system to 
avoid failures in the presence of faults. 

Fault prevention and fault removal try to avoid the 
presence of faults. However, in complex systems it is 
difficult to achieve their fault-free operations. On the other 
hand, fault tolerance and fault forecasting strategies both 
embrace the existence of faults and are focused on keeping 
the systems operational under the presence of one or more 
faults. The focus of the work presented in this paper relies 
on the latter case, specifically on fault tolerance, since very 
little research has been done in that area for perception 
systems of autonomous vehicles. 



  

This paper is organized as follows: In section 2 the 
models for sensor data fusion are explored. Then, the fault 
tolerance concepts and architectures are reviewed in section 
3. Section 4 explains the proposed fault tolerant perception 
system. Experimental results are shown in section 5. 
Finally, Section 6 concludes this paper. 

2 Sensor Data Fusion 
Autonomous vehicles require complete and accurate 

information about their environment to support their 
operation, but this information cannot be achieved using 
any one single sensor [3]. Consequently, a collection of 
sensors must be used and strategies to combine all sensory 
data have to be defined. Data fusion is the group of 
techniques used for combining data from multiple sensors 
(either of the same or different types) and related 
information into a common representational format to 
achieve more accurate inferences than could be achieved by 
using a single, independent sensor [4, 5]. 

 Data fusion not only adds a statistical advantage by 
adding N independent observations, but also improves 
observability resulting in reduced error regions [5]. 

The most cited architecture for data fusion is the JDL 
model that was created by the American Joint Directors of 
Laboratories Data Fusion Subpanel [6, 7].  The JDL model 
has a database and different levels of data processing 
interconnected by a common bus. The core of the JDL model 
refers to Levels 1-3. Level 4 (process refinement) is related 
to resource management and is not part of the core levels, 
but it can be used concurrently for giving a fault tolerant 
framework to the system. The JDL model does not request 
the levels to be processed in a sequential order and they can 
be executed concurrently. However, data fusion system 
designers have consistently assumed an ordering on the JDL 
levels [8]. A fifth level was proposed by Blasch and Plano 
[9] to incorporate the user in the fusion process. 

Polychronopoulos and Amditis [10] proposed the 
ProFusion2 model (PF2),  a revision of the JDL model, in 
order to apply it in multi sensor automotive safety systems. 
They grouped JDL levels into layers to add hierarchical 
structure. Also, they established inter-level and within-layer 
interactions, excluding the process refinement from the 
original JDL model. The ProFusion2 model (PF2) is 
described by 3 layers: I, Perception; II, Decision/ 
Application and III, Action/Human Machine Interface 
(HMI). The processing of the layers is done in a hierarchical 
structure from the lower to the upper level. 

3 Fault Tolerance 
The concept of fault tolerant systems deals with the 

problem of ensuring correct system service in the presence 
of faults in order to avoid unplanned behaviours [11]. The 
implementation of fault tolerance in general implies three 
steps: error detection, error location, and recovery. 

The most common sensor fault detection methods for 
complex systems are the analytical methods, also called 
model-based methods. These methods require a 
mathematical model of the system along with available 
inputs and outputs of the system in order to produce a group 
of features. Then, these features are compared with the 

system variables, creating residual values. The residuals 
that differ from the nominal values are called symptoms and 
can be subject to a symptom-fault classification in order to 
detect a fault and its location (fault diagnosis) [12].  Fault 
diagnosis is based on observed symptoms and 
experience-based knowledge of the system. One approach is 
the use of classification methods, where the relation 
between symptoms and faults are determined 
experimentally in a previous phase of the system. Another 
approach is the use of inference methods, where causal 
relations are created in the form of rules based on partially 
known relationships between faults and symptoms. 

In general, model based methods are categorized as 
observer-based [13, 14]. parity equations [15, 16] and 
parameter estimation techniques [17].These methods are 
very popular for fault tolerant control systems because 
models of control systems can usually be obtained. 
Nevertheless, soft computing techniques, such as neural 
networks, evolutionary algorithms and support vector 
machines (SVM), are being developed for fault detection 
and diagnosis (FDD) for other applications, because 
obtaining a good model of the system is a complex task and 
it is not always possible [18]. 

In recent years, only a few specific solutions of fault 
tolerant perception systems for autonomous vehicles have 
been developed. However, many researchers have 
implemented fault tolerant modules for autonomous 
vehicles in areas such as vehicle navigation sensors. The 
architectures applied for navigation systems can be grouped 
into centralized architectures and federated architectures.  

Centralized architecture uses a global filter that processes 
the measurements of all local sensors. The main advantage 
of this architecture relies on obtaining the most accurate 
solution as a consequence of the minimal information loss. 
Furthermore, hard sensor failures can be detected using 
residual tests by contrasting each sensor measurement with 
the accumulated estimation of the global filter [19]. 
However, the centralized filter is not robust against soft 
sensor faults [20]. Using a single filter tends to make all data 
agree. Therefore, if there is an undetected soft fault, such as 
a bias shift sensor, it will result in a displacement of the 
global estimate toward the faulty data. As a consequence, a 
good sensor might be declared faulty for disagreeing with 
the global estimate. In addition, once the soft fault is large 
enough to become detectable, it has already contaminated 
the data of the other sensors. 

Federated architecture [19] is composed of a group of 
local filters, that operate in parallel, and a master filter. It 
tries to isolate faulty sensors before their data becomes 
integrated into the system. For that, each local filter fuses 
data independently from a specific sensor with common 
information from a reference sensor. Then, the local 
estimates are fused in the master filter in order to generate 
the best global estimation.  

Local filters may use information from the master filter 
by setting parameters applying a feedback signal in order to 
improve their performance. However, if the master filter 
admits faulty data from any local filter, this will affect the 
whole system through the feedback signals.  On the other 
hand, federated filter architecture with no feedback is highly 



  

fault tolerant and provides a good response to soft faults. 
Since each local filter is independent, data from faulty 
sensors can be easily isolated before being integrated with 
the entire system, while the remaining sensors immediately 
generate the new federated filter system. In [21] a 
no-feedback federated filter is implemented for the 
multi-sensor navigation system of an unmanned aerial 
vehicle using a INS sensor as reference in order to obtain a 
good fault-tolerant performance. 

After identifying faults, a reconfiguration of the system 
architecture is required. Fault recovery can be achieved 
using direct redundancy or analytical redundancy [22]. 
With direct redundancy, a spare module is employed to 
replace the faulty one. On the other hand, analytical 
redundancy implies utilizing the working modules to 
complete the tasks which failed. For instance, if there is a 
fault in a laser scanner of an autonomous vehicle, the 
information from two cameras can be used instead to create 
range data and compensate for the laser scanner functions. 

The effects of a fault that transits from dormant to error 
and then to failure, in a fault tolerant system can be 
modelled by a sequence of states (see Fig. 1). Initially the 
system executes in a correct state (C). The transition from a 
state C to a tolerated error state (T) is constrained by a fault 
action. In the state T, a recovery action returns the system to 
a state C, whereas correct or fault actions maintain the same 
state. However, if the fault tolerant system has a limitation 
that is overrun by the propagation of a fault action to the 
outputs, the system will produce a failure. Thus, when the 
system is running in a tolerated error state a recovery action 
according to the fault action should be executed (e.g. 
resetting for software aging, synchronization for timing 
error, etc). 

 
Fig. 1:  Fault Tolerant System state space 

 

4 Proposed Fault Tolerant Perception 
The common modules used by autonomous vehicles’ 

perception systems are related to localization, road detection 
and obstacle detection. The study presented in this paper is 
limited to object detection for medium range obstacles and it 
is focused on fault tolerance. Thus, the causes of a fault are 
not important and just the faulty data itself is relevant 
because it is used to obtain the residuals in order to find an 
active fault. 

4.1 General model 

The general model proposed for information fusion is a 
modification of the PF2 model; we suggest integrating the 
process refinement into the sensor fusion process. 
Furthermore, the process refinement may interact with all 
the layers, allowing the implementation of fault tolerance 
not only in the perception layer, but for the entire 
autonomous vehicle system (see Fig. 2). 

 
Fig. 2:  Data fusion model for fault tolerant implementation [23] 

 
A federated perception architecture is proposed to fuse 

sensor data into a fault tolerant framework (see Fig. 3). The 
proposed architecture has been divided into different 
modules: one object detection for each sensor type, one local 
fusion for each support sensor, one master fusion and the 
FDD module. The federated perception architecture uses a 
master fusion module as a reference and various local fusion 
filters to validate information. The purpose is to use a highly 
reliable sensor as a reference sensor. Also, M and N sensors 
of different categories are proposed. Where the sum of M 
and N is at least two, so the FDD module would have at least 
three discrepancies group values to compare and find a 
fault.  

 
Fig. 3:  General view of the proposed fault tolerant perception 

architecture 
 
The sensor fusion performs with detected objects data in 

order to increase tracking consistency and to increase the 
adaptability to new types of sensors, which can be added by 
implementing the corresponding object detection module. 
Each local filter individually processes the compatible data 
between the reference sensor and the data provided by each 
sensor. The master fusion module combines information of 
local filters using their lists of objects. In addition, it realizes 



  

a tracking of the objects. The discrepancies from local 
fusion modules and the master fusion are used by the FDD to 
estimate the residuals values in a support vector machine 
(SVM) in order to identify if an error occurs in the sensors.  

4.2 Implementation 

The KITTI dataset [24-26] has been chosen in order to 
implement the proposed system. It includes information 
from greyscale and colour stereo sequences and 3D 
Velodyne point clouds synchronized at 10Hz.  Fig. 4 shows 
the proposed fault tolerant perception system adapted to the 
data available from the KITTI dataset. The Velodyne is used 
as the main sensor in order to take advantage of the high 
reliability and amount of information provided, while the 
vision sensors are used to complement the information.  

Object Detection (OD) combines diverse simple and fast 
state-of-the-art detection algorithms in order to obtain cues 
of possible obstacles in a real-time frame. There is one 
distinct OD category for each sensor type (Velodyne, vision 
sensor) and one instance of the respective category is created 
for each physical sensor (OD Velodyne, OD vision sensor1, 
OD vision sensor2). 

 LF creates a single objects list using data from a specific 
sensor and the reference sensor. In addition, it creates the 
discrepancy values between those sensors. The 
discrepancies values are features that latter are compared in 
the FDD module to create residuals that evaluate the 
presence of faults. More details of the implementation of 
OD and LF can be found in [23]. 

 
Fig. 4. Fault tolerant perception system for KITTI dataset [27]. 

 
[27] describes MF. It combines data from the reference 

sensor and the LF modules.  It uses SVM to identify patterns 
between the objects and the weight of each sensor in order to 
validate pixels in the objects. In addition, multiple object 
tracking is performed in order to provide information about 
the future position of objects. 

FDD applies SVM to recognize changes in the 
discrepancies from MF and LF modules. It creates a residual 
value which is mapped to 0 or 1, representing the presence 
or absent of a fault. In order to avoid false positives the 
output from the SVM is consider only if a faulty response is 
given after N consecutive outputs. Then, the respective 

sensor is reconfigured to a lower priority (high->low->off) 
[28].  

Since the nature of the proposed vision based OD 
algorithm is focused on mobile obstacles, the discrepancies 
values are grouped into static and dynamic features in order 
to avoid errors introduced by dynamic objects showing high 
discrepancies produced between vision OD and Velodyne 
OD. Thus, the SVM model in FDD is trained with a vector 
of 18 features, which represent 6 discrepancies values (3 
static and 3 dynamic) from each of the 3 fusion modules (2 
locals and 1 master).  

Fig. 5 [27] shows the states of the system when a fault is 
simulated. The transition actions are constrained by the 
outputs of FDD. The limitation of the current fault tolerant 
perception system is given by the number of faulty sensors, 
which is T/2 -1, where T represents the total number of 
sensors. For the KITTI dataset with the current 
configuration it means that 1 of the 3 sensor can be faulty at 
the time. 

5 Experimental Results 
The proposed architecture was tested using a sequence of 

161 images from the KITTI dataset in a Core i5 CPU at 3.10 
GHz. The frequency of the sensor acquisition was 10 Hz, 
which produces cycles of 100 ms. The maximum processing 
time of the system per cycle was 70 ms, which maintains the 
execution time of the system inside the frame given by the 
frequency of the sensor acquisition. The SVM models were 
trained using a subset of 25 representative images. The FDD 
model was trained using 635 vectors, whereas the MF model 
was trained with 505620 vectors.   

 
Fig. 5. System fault state space [27]. 

 
For the soft fault in the vision sensor 1, a displacement to 

the right by 30 cm in the objects was introduced.  Likewise, 
a displacement to the left by 30 cm in the objects from the 
Velodyne sensor was introduced for the second experiment.  

Then system was run in a correct state with a weight value 
of high for all the sensors. Eventually, FDD changes the 
weight for the faulty sensor from high to low and then off. 
Fig. 6 shows the output of the FDD module for the soft fault 



  

in vision sensor 1 (blue) and for the soft fault in the 
Velodyne sensor (red), when the respective sensor was 
reconfigured to a lower priority every time that the SVM 
response resulted positive for 4 consecutive images.  

In a previous work [28] it was found that the effect of the 
sensor weight on MF can be appreciated in the reduction of 
false positives, while the number of detected objects and the 
number of pixels positively classified as part of an object are 
similar for all the cases (with and without fault). Fig 7 shows 
the percentage of pixels from the detected dynamic objects 
that are false positives. The red line represents the case of 
the system executing without fault tolerance, this means that 
sensor weights were not changed, despites the values of the 
FDD outputs. On the other hand, the blue line depicts the 
case of the fault tolerant system, where a tolerated error state 
was activated accordingly with the FDD outputs. 

 
Fig. 6. Fault output from FDD. 

 
Fig. 7. False positives detection of MF with faulty data from top) 

Sensor vision, bottom) Velodyne. 
 
For the case of faulty data from sensor vision the false 

positives pixels are reduced up to 59% with an average of 
8% when fault tolerance is implemented. Similarly, false 
positives are reduced up to 47% with an average of 8% when 
fault tolerance is implemented in the presence of a fault in 
the Velodyne sensor. 

6 Conclusions 
A federated sensor data fusion architecture is proposed in 

order to provide fault tolerance to autonomous vehicle’s 
perception system. The proposed architecture minimizes the 
influence of faulty data allowing the system to enter in a 
tolerated error state, where a recovery action can be 
performed to avoid failures. It integrates the process 

refinement to the fusion process by combining data from 
sensors with the sensors weight feedback provided in 
real-time by the Fault Detection and Diagnosis module. 

 The system has successfully detected early faulty data 
from a singular sensor and it has minimized the influence of 
the faulty sensor up to 59% with an average of 8%. 
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