
Software Engineering and Distributed Computing in
image processing intelligent systems: a systematic

literature review
Luis Jacome-Galarza, Monica Villavicencio-Cabezas, Miguel Realpe-Robalino, Jose Benavides-Maldonado

Abstract—Deep learning is experiencing an upward technol-
ogy trend that is revolutionizing intelligent systems in several
domains, such as image and speech recognition, machine trans-
lation, social network filtering, and the like. By reviewing a total
of 80 studies reported from 2016 to 2020, the present article
evaluates the application of software engineering to the field
of intelligent image processing systems, it also offers insights
about aspects related to distributed computing for this type
of systems. Results indicate that several topics of software
engineering are mostly applied when academics are involved in
developing projects associated to this kind of intelligent systems.
The findings provide evidences that Apache Spark is the most
utilized distributed computing framework for image processing.
In addition, Tensorflow is a popular framework used to build
convolutional neural networks, which are the prevailing deep
learning algorithms used in intelligent image processing systems.
Also, among big cloud providers, Amazon Web Services is
the preferred computing platform across the industry sectors,
followed by Google cloud.

Index Terms—Image processing, software engineering, deep
learning, intelligent vision systems, cloud computing.

I. INTRODUCTION

Image processing is the application of a set of techniques
and algorithms to a digital image, in order to analyze, enhance,
or optimize its characteristics such as brightness and contrast.
Most image processing techniques involve treating the image
as either a signal or a matrix and applying standard signal-
processing or matrix manipulation techniques [1]. Image pro-
cessing has numerous applications in most human activities,
like medicine, security, astronomy and quality control [2-5].
Image processing applications may benefit from deep learning
algorithms, and multithreading.

Deep learning allows computational models that are com-
posed of multiple processing layers to learn representations of
data with multiple levels of abstraction. These models have
dramatically improved the state-of-the-art in speech recogni-
tion, visual object recognition, object detection and many other
domains such as drug discovery and genomics [6]. However,
the benefits of deep learning need to be assessed with respect
to its computational cost [7] and quality. A plethora of studies
have shown that state-of-the-art deep learning systems suffer
from defects and vulnerabilities that can lead to severe loss
and tragedies, especially when applied to real-world safety-
critical applications [8]. Therefore, the development of arti-
ficial intelligence applications in real world environments is
not trivial and the development process plays an important
role. This situation has led to a growing interest and need

to understand how AI-enabled applications are developed,
deployed, and maintained in real-world commercial settings
[9]. Deep learning software is mostly developed and trained
on the cloud or PCs with powerful GPU support [8]. When
it is deployed on a mobile or edge computing device with
limited computation power, the deep learning software must
be optimized for computation/energy efficiency, which could
introduce defects or lead to behavior differences [8].

Another aspect to consider when developing AI applications
is multithreading, which refers to the partitioning of the
functionality of the application into simple tasks -or threads-
to execute them concurrently [10]. The idea of multithreading
image processing applications on multicore systems and its
gains in performance have been demonstrated by a number of
authors who are actively working in distributed architectures
[11].

Global IT companies have been investing in distributed
architectures for supporting artificial intelligence technology
under cloud-based corporate strategy. Amazon’s Amazon Web
Service (AWS), MicroSoft’s Azure Platform, Google’s GCP
(Google Cloud Platform) and IBM’s Bluemix Service build
Big Data, IoT, machine learning, deep learning, and cognitive
service on top of cloud services [12].

The efficiency of intelligent systems also relies on the use
of specific microprocessors in the cloud. The learning phase
of deep neural networks relies on GPUs (Graphic Processing
Units) processors that were initially designed for video games,
such as those by NVIDIA. Other large AI companies often
develop dedicated processors, such as Google’s TPU (Tensor
Processing Unit) or Microsoft’s FPGA (Field Programmable
Gate Array) [12].

For building intelligent systems, there are also open source
deep learning frameworks such as Caffe, Chainer, Deeplearn-
ing4J, Keras, CNTK, MatConvNet, Minerva, Mxnet, Purine,
Tensorflow, Theano, Torch [12].

State-of-the-art
The state of the art for computer vision tasks is changing

quickly, the use of deep learning has given significant advances
in those tasks. Among the deep learning models with best
performance are the following: for semantic segmentation that
is clustering parts of an image that correspond to the same
object, we have HRNet-OCR [13], Efficient-Net-L2+NAS-
FPN [14], ResNeSt-269 [15], VMVF [16]. For image classifi-
cation, which is a task that assigns a label for each image, we
find FixEfficientNet [17], BiT-L [18], Wide-ResNet-101 [19],



Branching/Merging CNN+ Homogeneous Filter Capsules [20].
For object detection that is a task in which the model finds
instances of a class within an image, we have Efficient-Det
D7x [21], RODEO [22], Patch Refinement [23], IterDet [24].
For image generation that are the models which take a class
as an input and try to obtain its features composing an image,
we have NCNS [25], Image Transformer [26].

For its part, in the software engineering component, the
systematic literature review in [27] reports that reasoning
under uncertainty, search-based solutions and machine learn-
ing are the intelligent approaches that mostly implement the
agile software development. The work is [27] also reveals
that effort estimation, requirements prioritization, resource
allocation, requirements selection for a release or sprint and
requirement management are the most considered goals of
software engineering in intelligent systems.

Research goal
This research seeks to find out how software engineering is

applied in projects that involve image processing intelligent
systems (i.e. intelligent vision systems) as well as to get
insights about aspects related to distributed computing to
perform massive-scale and complex computing for this kind of
systems. On the one hand, software engineering is important
to ensure the quality of intelligent systems by following a
systematic approach. Since the automation of processes is
being implemented in a wide variety if industries and business,
it is crucial to follow a systematic approach when building
and deploying this kind of systems. It is important to remark
that deep learning projects involve additional challenges like
complexity, high computing demand, expensive and time con-
suming training processes, etc. On the other hand, distributed
computing is relevant for this research because deep learning
networks are typically computationally expensive to train,
requiring long periods of computation on many GPUs; as a
result, many users outsource the training procedure to the
cloud or rely on pre-trained models that are then fine-tuned
for a specific task [28] [29].

The rest of this paper is structured as follows: section 2
describes the research methodology; section 3 summarizes
the results of this ongoing research work; section 4 presents
the limitations and future work, and section 5 concludes the
article.

II. METHODOLOGY

For performing this preliminary study, we used the method-
ology proposed by Kitchenham [30], which includes: the for-
mulation of research questions; the search process; inclusion
and exclusion criteria; data extraction; and data analysis and
classification.

A. Research questions

The purpose of this research work is twofold: 1) Identify
how software engineering (SE) is applied to intelligent vision
systems (i.e. systems that involve computer vision and deep
learning); and 2) Identify distributed architectures used for this
kind of systems. Hence, the research questions are:

RQ1: What software engineering topics are being used
in the development of image processing systems with deep
learning?

RQ2: What distributed architectures are being used for
building image processing systems with deep learning?

B. Research process

In order to answer the RQ1 and the RQ2, we conducted
a manual search on the ScienceDirect, Google Scholar and
Springer databases. The search was perform in September
2020 and was run on titles, keywords and abstracts, but if
the information was not found in those sections, we read the
results and conclusions.

The search string for RQ1 (SE areas in image processing
with deep learning) and RQ2 (cloud computing architectures
for image processing with deep learning) are the following:

RQ1: ”image processing” AND ”deep learning” AND ”soft-
ware engineering”.

RQ2: ”image processing” AND ”deep learning” AND
(”cloud provider” OR ”cloud computing”)

C. Inclusion and Exclusion Criteria

We consider only articles published between 2016 and 2020.
The language for the search process was restricted to English,
and the type of publication to Scientific Articles.

The inclusion criterion considered in both search processes
is: The article should contain topics such as cloud computing,
computer vision, deep learning, any software engineering area,
and preferably be related to an industry sector.

D. Data Extraction

From the first search process (SE topics in image processing
with deep learning), we obtained the following amount of
articles:

• Springer: 1899
• Google Scholar: 6810
• ScienceDirect: 450
And from the second search process (cloud computing

architectures in image processing with deep learning), the
following amount of articles:

• Springer: 961
• Google Scholar: 7340
• ScienceDirect: 481

E. Data Analysis and Classification

The data analysis and classification steps were conducted
based on the previously defined inclusion criterion and the
classification process explained below until we achieved 40
articles per each research question:

• Reading the abstracts and conclusions of each retrieved
article.

• Searching for each criterion within the complete content
of the articles.

• When necessary, reading the whole article.
• Classifying by search criteria until 40 articles were

achieved per each research question.



The second and third steps were decisive to verify all criteria
and avoid discarding articles.

Therefore, the extraction process resulted in a total of 80
articles, which are included in the Appendix.

III. RESULTS

After reviewing the articles, we came up with the following
results: we analyzed a total of 80 articles, the distribution of
the publishing years is shown in Fig. 1:

Fig. 1. Distribution of the publishing years of the analyzed articles.

A. Query results for RQ1 - SE topics in image processing with
deep learning

The results for the first research question are presented in
Fig. 2 where it can be observed the software engineering topics
used in image processing projects that apply deep learning
algorithms classified by industry type.

The topics more commonly referred are software architec-
ture and software development process models. This could be
due to the importance of system architecture in AI application
development and the increasing use of agile development
methodologies.

In the figure, it can also be seen that most of the SE topics
have been reported in university projects, which is understand-
able given the awareness of academics about the importance
of applying a systematic approach when developing complex
systems. In the case of software testing, this topic also shows
its relevance in the automated driving, healthcare and biology
industries because testing helps to ensure quality in vision
systems.

In the following paragraphs, we provide a series of examples
of the use of software engineering in computer vision systems
for some industrial sectors.

Health
In S1-034, a deep learning model for early detection of

breast cancer using mammographic imaging is presented. The
algorithm was formulated applying SE to guarantee scalability,
flexibility and reliability. The SE process model used consists
of the following phases: collecting requirements for classi-
fying the images into infected and non-infected; designing

Fig. 2. Software engineering topics involved in deep learning and image
processing projects per industry.

the initial version of the proposed algorithm and obtaining
feedback between phases one and two to confirm that the
initial design is in accordance with the required constraints;
coding the algorithm; testing the proposed algorithm on data
sets corresponding to different case studies. Regarding the
testing stage, it was carried out in two parts; the first tested
the accuracy of the deep learning algorithm, and the second
tested the entire system.

Agriculture
In document S1-030, it is explained that plant diseases are

a great threat in agricultural production due to the losses they
cause. The severity of plant diseases is an important parameter
to measure the level of disease and can therefore be used
to predict its progress and recommend treatment. A useful
approach is transfer learning because a powerful classification
network is built using few data, adjusting the parameters of a
previously trained network on a large data set (e.g. ImageNet
and the PlantVillage dataset). Finally, it is explained that other
tools are important for building specialized software for plant
contol like the ”Assess: Image Analysis software helpdesk”
which is the most commonly used and also the discipline-
standard program to estimate disease severity.

Automotive
In the paper S1-009, authors have devised a framework that

supports the development of AI applications for autonomous
driving that include Deep Neural Networks (DNN). The frame-
work leads to a robust and disciplined development lifecycle
by following five steps: 1. Identifying DNN requirements 2.
Developing the learning-algorithm 3. Training the DNN 4.



Validating the training of the DNN 5. Validating the DNN
Additionally, the paper recommends the use of the W

model for deep learning using DNNs. This model conceptually
integrates a V model for data development with the standard V
model used for software development. The term ”programming
by example” is used to remark the importance of data in
developing systems based on deep learning technology.

Finally, the article refers to some standards for developing
autonomous driving applications. The most relevant and in-
fluential standards for deep learning are Automotive SPICE
(Software Process Improvement and Capability Determina-
tion) and ISO 26262. The first provides a process framework
that structures, at a high abstraction level, software develop-
ment activities; the second targets safety-related automotive
development. Other standar is the ISO/AWI PAS 21448 which
addresses the fact that for some ADAS (Advanced Driver
Assistance Systems) applications, a fault free system can still
suffer from safety violations (e.g. a false-positive detection of
an obstacle by radar)

Academia
In the paper S1-001, authors define Secure Deep Learning

Engineering (SDLE) as an engineering discipline of deep
learning software production, through a systematic applica-
tion of knowledge, methodology, practice on deep learning,
software engineering and security. SDLE is largely different
from traditional software engineering where the decision logic
is mostly programmed by human developers. SDLE adopts a
data-driven programming paradigm in which the deep learning
developer’s major effort is to prepare the data to be trained and
to design the neural network architecture, although the major
life cycle phases could still be shared: 1. Requirement Analysis
2. Data-Label Pair Collection. 3. DNN Design and Training
Program Implementation. 4. Runtime Training. 5. Testing and
Verification. 6. Deployment 7. Evolution and Maintenance

The SDLE authors point out that security vulnerabilities
can happen in almost every step. For instance, for the training
related steps, poisoning attacks can easily happen by ma-
nipulating training data. In the testing related steps, evasion
attacks can take place by perturbing the testing data slightly
(e.g. adversarial examples). In addition, when deploying the
deep learning software to different platforms or with different
implementation frameworks, there are always opportunities
for adversaries to generate attacks. Other important software
engineering issues to consider are: how to effectively generate
tests, how to measure the data quality used in tests, how to test
deep learning robustness and vulnerabilities; and many other
related matters.

In the paper S1-029, academics analyze deep learning
processing in real-time. In this example, the software engi-
neering related concern is that there have not been enough
frameworks for distributed deep learning models to process
real-time streaming data. In addition, it is not easy to deploy an
operating environment, such as an operating system, a runtime
virtual environment, and a programming model, to implement
a deep learning model inference based on multiple distributed
nodes.

Information Technology
In the paper S1-038, the authors present a deep-intelligent

framework for online video processing that aims to achieve
the non-functional requirements listed below:

• Performance: two types of performance requirements.

– Batch processing of large volumes of historical video
data (e.g. conducting a video summary, which is not
considered critical)

– Real-time processing (e.g. videos of emergency
cases, considered critical)

• Availability. The framework must be reliable to allow
hardware failures providing dependable services to users.

• Scalability. The cloud must be able to scale up, with the
ability to add video-sensing devices and processing nodes
dynamically.

• Modifiability. The framework must allow easy changes
of its functionalities so that future modifications are easy
to develop.

• Portability and usability. The framework must also pro-
vide a unified way to manage video equipment and video
data, and also support different Linux-style OSs.

The proposed Lambda Architecture includes the following
technology:

• Service-oriented architecture (SOA) for managing the
complexities of video data processing and the various
technologies involved. This will enable modifiability and
achieve portability.

• Publish - subscribe for decoupling event consumers
and providers and handling events while monitoring the
framework’s running status. This will help to achieve
the framework’s availability such that users can detect
malfunction states and initiate appropriate responses.

• MapReduce for analyzing enormous volumes of video
data. It can efficiently process distributed large datasets in
parallel to meet performance, scalability, and availability
requirements.

• Shared Data pattern for improving performance.
• Layered architecture. Framework functionalities might

evolve separately, and the processing of big video data
can also be separated into different types and might
evolve independently. So, the framework uses a layered
architecture to separate the different concerns. This can
support modifiability, portability, and usability

Robotics In the paper S1-021, the authors propose an
architecture that shows the promise of parallelism in FPGAs
(Field Programmable Gate Array). Their architecture matches
the massive parallelism inherent in neural networks for ob-
ject detection with the fine-grain parallelism of an FPGA
hardware. This dramatically reduce processing time in a Q-
learning algorithm using a multilayer perceptron and power
consumption of 9.7W. The results show up to a 43-fold speed
up by Virtex-7 FPGAs compared to a conventional Intel i5
2.3 GHz CPUs. Also, the power consumption can be further
reduced by introducing pipelining in the data path.



B. Query results for RQ2 - cloud computing architectures in
image processing with deep learning

In this section, we present three tables to summarize the
findings related to RQ2. This information is associated with
the technology chosen for distributed computing used to
develop image processing intelligent systems. As it is known,
lot of images are needed for building accurate deep learning
models. There is a number of images datasets available for
this purpose such as multiclass, health care, numbers, environ-
ment (animals included), people (faces and bodies), satellite
(included geography), forensic science and others.

Table 1 shows the data management and processing frame-
works that have been reported in the sample of articles
that we have reviewed. Apache Spark is the most popular
framework for distributed architectures among industry sectors
in intelligent vision systems, followed by Hadoop. As it can
be also observed, when it comes to healthcare, almost all
frameworks have been used for intelligent vision systems,
including MAMLS from Microsoft.

TABLE I
DATA MANAGEMENT AND PROCESSING VS. IMAGE DATASETS

Image
Datasets

Hadoop Spark MAMLS Elastic
cloud

IBM
Watson

Other

Multiclass 5% 7.5% 2.5%
Health
care

2.5% 2.5% 2.5% 2.5% 10%

Environment 2.5% 2.5%
Satellite
images

2.5%

Forensic
science

2.5%

Geography 2.5%
People 2.5% 2.5% 10%
Biology 5%
Animals 5%
Surveillance 2.5%
Other 5% 5% 5% 10%

Table 2 shows the participation of the main players in cloud
computing: Google cloud, Amazon Web Services (AWS),
Microsoft Azure, and IBM cloud, being AWS the provider
most commonly reported for managing image datasets. In
contrast, 15.78% of the analyzed projects still use their own
infrastructure.

Table 3 shows the deep learning frameworks used for
image processing. Tensorflow and Keras appear to be popular,
especially in academic research. One of the reasons associated
to this fact is because they are free to use. Both can be
used together for obtaining good results as it was reported
in one of the revised articles. Keras is also preferred for its
ease of use when building deep learning models, according
to the opinions expressed in the analyzed papers. Regarding
MAMLS (Microsoft Azure Machine Learning Studio), which
is a scalable machine learning platform, it has been used in
health care projects.

With respect to the type of neural networks used for process-
ing image datasets, CNN (Convolutional Neural Networks)

TABLE II
CLOUD COMPUTING PLATFORMS VS. IMAGE DATASETS

Image
Datasets

Google
cloud

AWS Azure IBM
cloud

Other Private

Multiclass 2.63% 2.63% 5.26% 5.26%
Health
care

2.63% 5.26% 2.63% 7.89%

Environment 2.63% 2.63%
Satellite
images

2.63%

Forensic
science

2.63%

Geography 2.63%
People 2.63% 2.63% 7.89% 2.63%
Biology 2.63% 2.63%
Animals 2.63% 2.63%
Surveillance 2.63%
Other 5.26% 7.89% 10.52%

TABLE III
DEEP LEARNING FRAMEWORKS VS. IMAGE DATASETS

Image
Datasets

Keras TensorflowCaffe MAMLS OpenCV Other

Multiclass 2.38% 7.14% 4.76% 2.38% 4.76%
Health
care

2.38% 11.90%

Environment 4.76%
Satellite
images

2.38%

Forensic
science

2.38%

Geography 2.38%
People 2.38% 4.76% 4.76% 7.14%
Biology 2.38% 2.38%
Animals 4.76%
Surveillance 2.38%
Other 2.38% 2.38% 16.67%

undoubtely appears as the most utilized network architecture
in computer vision projects, being reported in 70.57% in
the analyzed papers. CNN architectures are also combined
with RNN (Recurrent Neural Networks) and LSTM (Long
Short-Term Memory) architectures for approaching specific
computer vision problems such as violence detection in videos.
In addition, DBN (Deep Belief Network) was found in very
specific projects of image processing in Geography.

Regarding system architecture, we found that 14.29% of the
analyzed projects reported the use of containers and 14.28%
used virtual machines. For the cluster orchestration method,
11.44% used kubernetes, 5.71% Mesos and 5.72% Docker.

Next, we present some examples related to cloud computing
architecture applied to intelligent image processing systems:

Paper S2-001 mentions that deep learning has remarkable
performance, but it is computationally demanding. Therefore,
cloud computing is the answer to the challenges surrounding
deployment of deep learning in a laboratory setting, since
most deep learning models have over a million parameters
each of which must be tuned during the training process.
Containerization (i.e. the encapsulation of software into a
container with its computing environment) allows for software



to be shipped with proper versioning of dependencies.
Paper S2-008 exposes the fact that the ”big-data revolution”

has struck biology, because nowadays, it is common for robots
to prepare cell samples and take thousands of microscopy
images. Looking at the resulting images by eye would be
extremely tedious, not to mention subjective. It is also compu-
tational consuming; hence, it is highly recommended to enable
running pre-trained deep learning models in the cloud in order
to improve developing time.

Other revised papers also state the benefits of cloud comput-
ing, as it has become a prevalent platform to run deep learning
applications. With cloud services, deep learning models can be
deployed easily for the convenience of users (S2-011); cloud
computing can be adopted to make the system faster and allow
many concurrent users (S2-015).

Concerning the datasets utilized in the analyzed papers we
can mention: Lung Image Database Consortium (LIDC), Im-
age Database Resource Initiative (IDRI), CT Medical Image,
DIARETDB datasets (Health), Fei Face, IIITD Latent Fin-
gerprint, Violent Interaction datasets (Security), PETS, KITTI
(Traffic), STL-10, CIFAR-100, ImageNet, ResNet-50 datasets
(General), MNIST (Others).

It was also found in the analyzed papers that health care
datasets are expensive, difficult to obtain and involve privacy
issues; wireless sensor datasets are noisy and have missing
values, and industry datasets have complex multimodality
features; it is necessary to overcome those challenges to build
high quality intelligent systems.

IV. LIMITATIONS AND FUTURE WORK

The limitation of this research is the definition of broad
categories of software engineering topics for presenting the
results. As future work, we will expand this research in the
specific field of Generative Adversarial Networks applied to
image processing.

V. CONCLUSIONS

Despite its complexity, the use of deep learning in produc-
tion environments is getting spread among many industries.
In this paper, we analyze how software engineering is applied
in intelligent computer vision systems, specifically those that
used deep learning algorithms. According to our findings,
academia, automated driving and health care industry sectors
are the ones were software engineering is mostly applied; we
can explain this fact because this type of systems need to be
built with a disciplined approach assuring and controlling their
quality. For data management and processing, we found that
Apache Spark is the most utilized framework, followed by
Hadoop. Among the big cloud platforms, Amazon Web Ser-
vices is the most widely used in all industry sectors, followed
by Google cloud. Also, using Tensorflow (powerful) with
Keras (easy-to-use) is a good combination for building deep
learning models from image datasets. Finally, we conclude
that it is very important to have good quality image datasets
for training reliable deep learning systems that can be used in
production environments. Moreover, the systematic approach

of software engineering has been useful to define process
models focused on the improvement of the development of
intelligent computer vision systems.

REFERENCES

[1] P. Ganney, E. Claridge, in Clinical Engineering, Image Processing
Software, 2014.

[2] A. Papour, Z. Taylor, O. Stafsudd, W. Grundfest. “Real time early
detection imaging system of failed wounds and heterotopic ossification
using unique Raman signatures”. In Medical Imaging, Biomedical
Applications in Molecular, Structural, and Functional Imaging . Inter-
national Society for Optics and Photon-ics, March 2015, Vol. 9417, pp.
94171G.

[3] L. Bao, Y. Zhou. “Image encryption: Generating visually meaningful
encrypted images”. Information Sciences, 324, 2015, pp. 197-207.

[4] M. Perrin, J. Maire, P. Ingraham, D. Savransky, M. Millar-Blanchaer,
S. Wolff, C. Marois. “Gemini Planet Imager observational calibrations
I: Overview of the GPI data reduction pipeline”. In Ground-based and
Airborne Instrumentation for Astronomy” V (Vol. 9147, pp. 91473J).
International Society for Optics and Photonics, 2014.

[5] H. Sereshti, Z. Poursorkh, G. Aliakbarzadeh, S. Zarre, S. Ataolahi. “An
image analysis of TLC patterns for quality control of saffron based on
soil salinity effect: A strategy for data (pre)-processing”. Food chemistry,
239, 2018, pp. 831-839.

[6] P.S. Martins, J. Real. “Minimizing the mode-change latency in real-
time image processing applications”. In Bio-Inspired Computation and
Applications in Image Processing, 2016.

[7] Image Processing, https://www.sciencedirect.com/topics/engineering/image-
processing, last accessed 2020/04/21.

[8] L. Ma, F. Juefei-Xu, M. Xue. Secure Deep Learning Engineer-
ing: A Software Quality Assurance Perspective. arXiv preprint
arXiv:1810.04538, 2018.

[9] I. Targio, I. Yaqoob, N. Anuar, S. Mokhtar, A. Gani, S. Khan. “The
rise of big data on cloud computing: Review and open research issues”,
2015, vol. 47, p. 98-115

[10] W. Fu, T. Menzies. “Easy over Hard: A Case Study on Deep Learning”,
In Proceedings of the 2017 11th joint meeting on foundations of software
engineering, 2017, pp. 49-60.2017.

[11] L. Lwakatare, A. Raj, J. Bosch, H. Holmstrom, I. Crnkovic. “A
Taxonomy of Software Engineering Challenges for Machine Learning
Systems: An Empirical Investigation”, 2019.

[12] K. Lee, N. Ha. AI platform to accelerate API economy and ecosystem.
2018 International Conference on Information Networking (ICOIN).
IEEE, 2018. p. 848-852.

[13] Tao, A., Sapra, K., Catanzaro, B. (2020). Hierarchical multi-scale
attention for semantic segmentation. arXiv preprint arXiv:2005.10821.

[14] Xie, Q., Luong, M. T., Hovy, E., Le, Q. V. (2020). Self-training with
noisy student improves imagenet classification. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(pp. 10687-10698).

[15] Zhang, H., Wu, C., Zhang, Z., Zhu, Y., Zhang, Z., Lin, H.,
Smola, A. (2020). Resnest: Split-attention networks. arXiv preprint
arXiv:2004.08955.

[16] Mandelli, S., Borra, F., Lipari, V., Bestagini, P., Sarti, A., Tubaro, S.
(2018). Seismic data interpolation through convolutional autoencoder.
In SEG Technical Program Expanded Abstracts 2018 (pp. 4101-4105).
Society of Exploration Geophysicists.

[17] Touvron, H., Vedaldi, A., Douze, M., Jgou, H. (2020). Fixing
the train-test resolution discrepancy: Fixefficientnet. arXiv preprint
arXiv:2003.08237.

[18] Kolesnikov, A., Beyer, L., Zhai, X., Puigcerver, J., Yung, J., Gelly, S.,
Houlsby, N. (2019). Big transfer (bit): General visual representation
learning. arXiv preprint arXiv:1912.11370, 6(2), 8.

[19] Chen, L. C., Wang, H., Qiao, S. (2020). Scaling Wide Residual Networks
for Panoptic Segmentation. arXiv preprint arXiv:2011.11675.

[20] Kalganova, T., Byerly, A., Dear, I. (2020). A Branching and Merging
Convolutional Network with Homogeneous Filter Capsules.

[21] Tan, M., Pang, R., Le, Q. V. (2020). Efficientdet: Scalable and efficient
object detection. In Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition (pp. 10781-10790).

[22] Acharya, M., Hayes, T. L., Kanan, C. (2020). Rodeo: Replay for online
object detection. arXiv preprint arXiv:2008.06439.



[23] Lehner, J., Mitterecker, A., Adler, T., Hofmarcher, M., Nessler, B.,
Hochreiter, S. (2019). Patch Refinement–Localized 3D Object Detection.
arXiv preprint arXiv:1910.04093.

[24] Rukhovich, D., Sofiiuk, K., Galeev, D., Barinova, O., Konushin, A.
(2020). IterDet: Iterative Scheme for ObjectDetection in Crowded En-
vironments. arXiv preprint arXiv:2005.05708.

[25] Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S.,
Poole, B. (2020). Score-Based Generative Modeling through Stochastic
Differential Equations. arXiv preprint arXiv:2011.13456.

[26] Parmar, N., Vaswani, A., Uszkoreit, J., Kaiser, L., Shazeer, N., Ku, A.,
Tran, D. (2018, July). Image transformer. In International Conference
on Machine Learning (pp. 4055-4064). PMLR.

[27] Perkusich, M., e Silva, L. C., Costa, A., Ramos, F., Saraiva, R.,
Freire, A., Perkusich, A. (2020). Intelligent software engineering in the
context of agile software development: A systematic literature review.
Information and Software Technology, 119, 106241.

[28] T. Gu, B. Dolan-Gavitt, S. Garg. Badnets: “Identifying vulnerabil-
ities in the machine learning model supply chain”. arXiv preprint
arXiv:1708.06733, 2017.

[29] A. Parvat, J. Chavan, S. Kadam. “A survey of deep-learning frame-
works”. In International Conference on Inventive Systems and Control
(ICISC). IEEE, 2017, pp. 1-7.

[30] B. Kitchenham, S. Charters. “Guidelines for performing systematic
literature reviews in software engineering”. Cs. auckland. ac. nz., 2016.

[31] P. Moritz, et al. “Ray: A Distributed Framework for Emerging AI
Applications”, 2017.

[32] SparkR https://spark.apache.org/docs/latest/sparkr.html, last accessed
2020/04/20.

[33] N. Madhavji, A. Miranskyy, K. Kontogiannis. Big picture of big
data software engineering: with example research challenges. In 2015
IEEE/ACM 1st International Workshop on Big Data Software Engineer-
ing, 2015, pp. 11-14.

[34] Q. Xiao, K. Li, D. Zhang, W. Xu. “Security risks in deep learning
implementations”. In : 2018 IEEE Security and Privacy Workshops
(SPW). IEEE, 2018, pp. 123-128.

[35] H. Hosseini, B. Xiao, A. Clark, R. Poovendran. “Attacking automatic
video analysis algorithms: A case study of google cloud video intelli-
gence api”. In : Proceedings of the 2017 on Multimedia Privacy and
Security. ACM, 2017, pp. 21-32.

[36] B. Kehoe, S. Patil, P. Abbeel, K. Goldberg. “A survey of research
on cloud robotics and automation”. IEEE Transactions on automation
science and engineering, vol. 12, no 2, 2015, pp. 398-409.

APPENDICES

The list of the analyzed papers is available in the Appendix
available in:

https://www.dropbox.com/s/ifpigan0e3s79ck/appendices.pdf?dl=0


