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The classification of banana ripeness is critical for the external assessment of fruit quality in automated inspection 
systems. This study investigates the robustness of deep learning models under varying illumination conditions, 
utilizing a dataset of real banana images captured in multiple lighting scenarios. Models were trained and 
evaluated with gamma-based illumination augmentation generated through the Low-light Image Enhancement 
model to simulate realistic variability. Although training on pristine images yields high baseline accuracy, the 
models exhibit pronounced performance drops under altered illumination, highlighting significant overfitting 
issues. Augmentation substantially improves robustness, but the degree of improvement is architecture-dependent 
and does not fully mitigate vulnerabilities under extreme lighting conditions. Furthermore, the trade-offs between 
model complexity, inference efficiency, and generalization capacity are critically analyzed, revealing constraints 
for real-time and resource-limited applications. In particular, baseline accuracies reached an average of 92.5% 
under ideal lighting (I0), with ViT scoring 93.13% and InceptionV3 trailing at 89.84%. Under moderate gamma 
augmentation (Γ = 0.4), performance dropped by up to 11.8 percentage points (InceptionV3: from 89.84% to 
77.63%). Training with augmented data restored accuracy by 8.3 pp on average, with InceptionV3 recovering 
to 91.88% and ViT maintaining 92.90%. Inference times ranged from 2.08 ms (ViT) to 3.89 ms (InceptionV3), 
demonstrating feasibility for real-time deployment. These findings emphasize the importance of incorporating 
environmental variability into evaluation protocols to ensure a reliable deployment of automated grading systems 
in practical scenarios.

1. Introduction

Assessment of banana ripeness is a key parameter in ensuring qual

ity and market value [1]. Ripeness significantly influences every stage of 
the production and commercialization chain, determining the handling 
and the final destination [2,3]. During harvest, bananas are harvested 
in their physiologically green stage (the minimum level of colorimetry) 
to prevent damage and extend their shelf life during transport [4]. In 
the post-harvest phase, the ripeness level defines the selection, classifi

cation, and packaging processes, as international markets require fruit 
that meets specific conditions to withstand long-distance shipping [5,6]. 
During distribution and marketing, control of ripening with ethylene 
(internal inspection) or the use of a color reference (external inspec

tion) allows the product to be adapted to market needs, ensuring it 
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reaches the optimal stage for sale and consumption [7]. Finally, ripeness 
influences consumer choice, as green bananas are preferred for cook

ing, while riper bananas are ideal for direct consumption or use in the 
food industry [8]. However, inspections are often performed manually, 
making them slow and prone to human error [9]. Consequently, devel

oping technological applications that integrate machine vision and deep 
learning (DL) models could enable more precise classification and dig

italization of processes for the benefit of all stakeholders in the supply 
chain [10--12].

The external quality inspection of bananas generally involves a visual 
evaluation of the color of the peel, the appearance of spots, and the over

all condition of the surface. Traditionally, this inspection is performed 
manually by trained personnel, following criteria defined by established 
international standards such as USDA, OECD, or similar ripening guide
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lines. However, manual inspection is subjective, labor intensive, and 
prone to inconsistencies, highlighting the need to implement automated 
and efficient methods [13].

Automating this classification using DL models not only provides 
consistency and reliability, but also enhances efficiency by significantly 
reducing human errors and subjectivity in quality inspections [14].

DL models, such as Convolutional Neural Networks (CNN) and Vi

sion Transformer (ViT), have been successfully applied to classify fruit 
ripeness during the post-harvest stage.

Saranya et al. [15] presents a proposal to classify four stages of ba

nana ripeness using a customized CNN model, which is compared to 
the VGG16 and ResNet50 models, achieving a validation accuracy of 
96.14% with both original and enhanced data. The study shows that 
the proposed model uses fewer parameters and requires less training 
time than the state-of-the-art models, while also benefiting from data 
augmentation. For the classification, four stages of ripeness (ripe, par

tially ripe, very ripe, and overripe) [16], with a total of 273 images (104 
in the first stage, 48 in the second, 88 in the third and 33 in the fourth). 
However, the limited amount of data and the unbalanced class distri

bution affect the generalization of the model to more varied scenarios. 
Likewise, variations in lighting and real field conditions remain a chal

lenge.

Chuquimarca et al. [17] focuses on classifying the levels of ripe ba

nanas using CNN models and proposes building a robust dataset that 
combines real and synthetic images. The authors introduce a simple 
custom CNN architecture, initially trained with synthetic data and later 
refined through transfer learning, then evaluated with real data. Multi

ple models were tested including ResNet50, VGG19, InceptionV3, and 
InceptionResNetV2, with the proposed model achieving a higher accu

racy of 91.70%. The study highlights that generating synthetic banana 
images is more cost-effective and efficient than collecting large volumes 
of real images, although it notes the limitation of an imbalance in the 
number of real images for each ripeness level and the absence of envi

ronmental considerations.

Knott et al. [18] proposes an approach based on pre-trained ViT to 
facilitate banana ripeness classification and apple defect detection with

out the need to train traditional CNNs, achieving competitive accuracy 
(within 1% of the best CNN) and requiring up to three times fewer train

ing samples to reach 90% accuracy. It also emphasizes the importance 
of Green AI by reducing costly computational demands and large data 
volumes. However, current research does not cover Transformer opti

mization or fine-tuning, nor does it address the method’s adaptability to 
environments with limited data and basic hardware.

Arunima et al. [19] presents a CNN-based model to classify the 
ripeness of Nendran bananas during the post-harvest stage, using a 
data set of 4,320 images and comparing its performance against es

tablished models such as VGG16, VGG19, InceptionV3, ResNet50, and 
EfficientNetB0. The study highlights that the proposed CNN, consisting 
of nine layers, achieves an outstanding accuracy of 95%, outperform

ing the other evaluated architectures. However, although the research 
demonstrates promising results, it lacks a more detailed critical analysis 
regarding key aspects such as the model’s robustness against variations 
caused by irregular illumination on the fruit.

In Chang et al. [20] a hybrid physics based and learning based color 
constancy method was used to preprocess images of unharvested palm 
fruit bunches before training a YOLOv8 detector yielding a 1.5% in

crease in mAP under variable lighting. This work underscores the im

portance of illumination normalization in reducing color shifts and en

hancing model robustness in outdoor scenarios and provides a method

ological precedent for our illumination augmentation strategy in banana 
ripeness classification.

In a recent study [21] propose a hybrid attention convolutional 
network for avocado ripeness classification on resource constrained 
devices combining spatial channel and self attention modules to cap

ture local blemish and texture features alongside global dependencies 
Through transfer learning on EfficientNetB3 and MobileNetV3 they 

achieve over 91% accuracy while preserving inference speed and mem

ory footprint suitable for smartphones This methodology underscores 
the power of attention mechanisms to improve the robustness and ef

ficiency of lightweight models under visual variability and provides 
valuable guidance for banana ripeness classification under varying il
lumination where precision and deployment on modest hardware must 
be carefully balanced.

Correcting low-light images is critical, because banana ripeness is 
primarily assessed by the green-to-yellow chromatic ratio and the ap

pearance of browning. Classical histogram-based methods and several 
recent DL approaches often raise brightness at the cost of oversatu

rating those channels, thereby shifting the color distribution [22--24]. 
Consequently, any illumination-enhancement mechanism must preserve 
the image’s original colorimetry. To evaluate the suitability of different 
illumination-enhancement algorithms, we reviewed the most influential 
methods published in recent years. Table 1 compares them in terms of 
training requirements, main limitations, and technical advantages, with 
particular attention to maintaining the green-to-yellow color balance 
that is vital for estimating banana ripeness.

The comparison shows that DL model enhancers such as Retinex-Net, 
Zero-DCE, EnlightenGAN, LLFlow and SCI achieve impressive percep

tual quality, but rely on large training datasets and often introduce 
color artefacts either oversaturation or texture smoothing. In contrast, 
LIME operates without annotated data, preserves the critical green-to

yellow chromatic balance required for the evaluation of ripeness and 
has a lightweight implementation, making it the most suitable and cost

effective option for enhancing banana images captured under uncon

trolled lighting.

De-Arteaga et al. [29] identify two main challenges for deploying 
computer vision and deep learning in post-harvest quality assessment:

• Dataset limitations: Images captured with smartphones along the 
production chain lack a standardized acquisition protocol, produc

ing lighting shifts that undermine model robustness. The limited 
number of real samples—due to the high cost and effort of acquir

ing images throughout the ripening process—and the unpredictable 
variability in operational environments further constrain the repre

sentativeness of training data.

• Resource constraints: Farmers and packing-house operators often 
cannot afford specialized hardware, so models must run efficiently 
on standard devices such as mobile phones or low-cost cameras to 
enable practical adoption.

This study addresses these issues by employing lightweight DL ar

chitectures capable of real-time execution on commodity hardware and 
by extending previous work [17] through the introduction of controlled 
illumination variations to rigorously evaluate model stability under re

alistic lighting changes.

The main contributions of this article are:

• The introduction of lighting variations into the dataset for banana 
ripeness classification, aiming to evaluate and improve model ro

bustness and stability of the model under varying illumination con

ditions.

• A detailed comparison of DL models considering the number of pa

rameters, inference time, and efficiency, providing clear criteria for 
selecting the most efficient and suitable model for real-world appli

cations.

The paper is structured as follows. Section 2 outlines the over

all methodology, beginning with the definition of ripeness levels and 
dataset construction, followed by the illumination-variation procedure, 
the transfer-learning approach, the DL models considered and the eval

uation protocol. Section 3 presents the experimental findings under 
various lighting conditions, while Section 4 highlights the main con

tributions and practical implications of the study.
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Table 1
Comparison of recent low-light enhancement methods and their suitability for banana-ripeness classification.

Method Training 
required

Main limitations Key advantage for this study

LIME [25] No Slight edge sharpening; no curve fine-tuning Preserves the green–yellow chromaticity critical for ripeness 
assessment

Retinex-Net [26] Yes Requires low/high-light pairs and a large labeled dataset Recovers fine detail in shaded regions

Zero-DCE [22] Yes Sensitive to uniform textures; needs thousands of images to generalize Compact network; pair-free training

EnlightenGAN [23] Yes Over-saturation in 𝑅 and 𝐺 channels; large unpaired dataset needed Global perceptual enhancement while preserving structure

LLFlow [27] Yes High VRAM usage; extensive data for fine-tuning SOTA visual quality; consistent brightness via invertible flow

SCI [28] Yes Manual curve adjustment per batch; requires wide lighting diversity in 
training

Fast inference on GPU; pair-free training

2. Materials and methods

This section details the experimental procedure. First, a four-level 
banana ripeness taxonomy (Green, Partially ripe, Ripe and Over-ripe) 
is established as the reference for all subsequent analyses. Next, we de

scribe the construction of a dataset comprising 3,495 real images and 
161,280 synthetic images generated with a 3D banana model in Unreal 
Engine. Then, we apply the Low-light IMage Enhancement (LIME) al

gorithm to create seven brightness enhancement variations (Γ = 0.1 to 
0.7) per image while preserving the critical green-to-yellow chromatic 
relationship. A transfer learning strategy reuses weights pretrained on 
the synthetic data to accelerate convergence and improve the gener

alization of the DL model. In this work, we evaluate six architectures 
(ResNet50, VGG19, InceptionV3, Inception-ResNetV2, CIDIS and Vision 
Transformer) on the augmented dataset across varying brightness lev

els. Finally, we define an evaluation protocol that includes accuracy, 
precision, recall, and F1 score, as well as model parameter counts and 
per-image inference time under each illumination condition, employing 
stratified splits to rigorously compare the models.

2.1. Banana ripeness

Banana ripeness plays a crucial role in determining fruit quality, 
directly influencing post-harvest management, market acceptance, and 
consumer preference. An accurate classification of banana ripeness en

sures that the fruit meets international quality standards, affecting its 
marketability, shelf life, and final use [30].

Conventionally, bananas are classified into multiple ripeness stages 
based primarily on the coloration and appearance of the peel. Although 
there are up to seven standard ripeness levels, they are commonly 
grouped into fewer categories to simplify and clarify the process. In this 
research, four main ripeness levels have been established, aligned with 
industry practices and market requirements [17] (see Fig. 1):

• Level A (Green): Completely green peel, firm texture, predomi

nantly starch composition.

• Level B (Partially ripe): Predominantly green peel with initial 
yellow spots appearing, less firm texture, and beginning of starch

to-sugar conversion.

• Level C (Ripe): Completely yellow peel, optimal softness for im

mediate consumption, predominantly sugar composition. 
• Level D (Overripe): Significant presence of brown spots or areas on 

the peel, softer texture, high sugar content, suitable for immediate 
consumption or processing.

2.2. Dataset generation

In this study, we consider the use of the publicly available data set at 
https://github.com/luischuquim/BananaRipeness, which provides im

ages of bananas in four different ripe stages [17]. This dataset includes 
both real and synthetic images, expanding the possibilities for training 
and evaluating DL models. However, for this study, greater emphasis 
is placed on real data, as it more accurately reflects the natural varia

Fig. 1. Banana image samples representing the four ripeness levels used in this 
work: a) Level A (Green), b) Level B (Partially ripe), c) Level C (Ripe), and d) 
Level D (Overripe).

tions in the appearance of bananas under different conditions of light 
and ripeness.

The dataset consists of 3,495 real images of Cavendish bananas, cap

tured within a controlled climatic environment at temperatures between 
15 °C and 18 °C over a period of 28 days, which approximates the full 
ripening duration of this banana variety from the first day of the post

harvest stage [31]. In addition, four levels of banana ripeness were con

sidered, corresponding to one level of ripeness per week. Consequently, 
the real data set has an imbalanced number of images at each ripeness 
level due to acquisition complexity, which hinders the efficiency of DL 
models.

The development of this real data set is costly and tedious, as it 
requires dedicated personnel to supervise the data acquisition process 
throughout the banana ripening period. In addition, the environmen

tal conditions where bananas are stored must be carefully controlled. 
Consequently, to obtain a sufficiently large number of images neces

sary for training DL models, the acquisition process must be repeated 
multiple times, resulting in significant costs and considerable staff time. 
Currently, there are technological tools that facilitate the generation of 
synthetic datasets; therefore, such tools, including the Unreal Engine, 
are being explored to generate a greater number of images per ripeness 
level [32,33].

Synthetic datasets represent an important complement for fruit data 
augmentation due to their low cost and the ease of generating large 
amounts of high-quality synthetic images similar to real images [34,35]. 
The process of generating the synthetic banana image dataset for differ
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Fig. 2. Virtual scenario for the generation of the synthetic images using Unreal 
Engine [17].

Table 2
Summary of the banana dataset and CIDIS model performance [17].

Banana Ripeness Level Number of Real Images Number of Synthetic Images 
Level A 1,429 40,320 
Level B 815 40,320 
Level C 559 40,320 
Level D 692 40,320 

ent ripeness levels is carried out by creating a virtual scenario using the 
Unreal Engine software tool, in which a 3D banana model is employed 
according to a given ripeness level to produce synthetic images [17]. 
The artificial appearance of banana ripeness is generated using layers 
derived from real images. The virtual environment includes three rails 
(rail-1, rail-2, and rail-3), each equipped with cameras mounted at 30 
different positions and angles (positions C1--C30), enabling the acquisi

tion of synthetic 2D RGB images of bananas at specific ripeness stages 
(see Fig. 2). The size of the synthetic images is 224x244 pixels, the same 
as the real dataset.

To provide greater variability to the virtual scenario, the synthetic 
dataset is configured with eight different backgrounds: orange, purple, 
brown, light blue, asset platform, basic wall, concrete tiles, and rock 
marble. Thus, considering all proposed scenario combinations, the to

tal number of synthetic images generated is 161,280, approximately 40 
times greater than the number of images in the real dataset, with 40,320 
synthetic images per maturity level (see Table 2).

Variability in lighting conditions poses a critical challenge in ba

nana ripeness classification, as illumination fluctuations are inevitable 
in industrial post-harvest environments and directly affect color per

ception in RGB images. Reproducing this diversity of lighting scenarios 
in real world settings entails high costs, prolonged acquisition times, 
and considerable logistical effort, limiting the representativeness of the 
collected data. In this context, synthetically augmenting illumination 
variations using the LIME model is justified as an effective strategy to 
simulate realistic lighting conditions in a controlled and cost-e�icient 
manner. This intervention is applied exclusively to the real dataset, as it 
more faithfully captures the complexities inherent to the ripening pro

cess and the natural conditions of data acquisition, in contrast to the 
synthetic dataset. Consequently, the models’ ability to generalize un

der variable lighting scenarios can be enhanced since the diversity of 
the training set is increased without the need for additional data ac

quisition processes, and the practical relevance of the experiments for 
real-world operational contexts is preserved.

2.3. Lighting variation model

Images captured in low-light conditions often exhibit poor visibility, 
negatively affecting not only their visual quality, but also the perfor

mance of DL models that rely on high-quality inputs [36,37]. To address 
this issue, this work utilizes the Low-light Image Enhancement (LIME) 
method, originally proposed to improve the luminosity of images.

The LIME method enables the generation of lighting variations in the 
real banana dataset, thus increasing both the quantity and diversity of 
data available to train intelligent ripeness classification models. Specifi

cally, LIME first estimates the illumination of each pixel by determining 
the maximum value among the R, G, and B channels of each image [25]. 
Subsequently, this initial illumination map is refined by applying struc

tural constraints to achieve a more consistent final illumination map 
[38]. Using this enhanced map, the illumination of the original images 
is effectively improved.

The application of the LIME method to the real dataset allows an in

crease in the amount of available data through the generation of images 
with controlled lighting variations, thus potentially enhancing the gen

eralization capability of DL models under diverse lighting conditions 
[39]. In addition, previous studies have shown that LIME offers supe

rior performance compared to other state-of-the-art methods in terms of 
image quality and processing speed, ensuring improvements in related 
tasks such as object detection, recognition, and classification [36,40]. 
Therefore, the use of LIME contributes significantly to the robustness 
and versatility of DL models developed for classification under real and 
varying conditions.

Initially, LIME generates a preliminary illumination map by identi

fying the maximum value among the RGB channels for each pixel. Then, 
this initial map is optimized using a structural smoothing model to pre

serve visual coherence, solving an optimization problem via Fast Fourier 
Transforms (FFTs). Finally, the original image is corrected by dividing 
each RGB channel by this optimized illumination map, adjusting the 
intensity further through a specific gamma parameter to generate dif

ferent lighting variations. This process enhances image visibility and 
visual quality, making the images more suitable for applications in DL 
models. Additionally, by varying the gamma value, it is possible to ob

tain multiple enhanced versions of the same image, thereby enriching 
the diversity and quantity of the training dataset.

Algorithm 1 LIME applied to banana dataset augmentation.

Require: Original dataset images {𝐼𝑛}𝑁𝑛=1, gamma values Γ =
{0.1,0.2,0.3,0.4,0.5,0.6,0.7}

Ensure: Augmented dataset images with illumination variations

1: for 𝑛 = 1 to 𝑁 do

2: 𝐼 ← Load image 𝐼𝑛
3: for 𝛾 in Γ do

4: Initialize illumination map 𝑇̂ as the maximum of 𝑅, 𝐺, 𝐵 channels 
per pixel

5: Refine 𝑇̂ by applying structural constraints:

Solve the following iterative optimization:

𝑇 (𝑡+1) ← Optimize illumination map

𝐺(𝑡+1) ← Update gradient subproblem

𝑍 (𝑡+1) ← Update dual variable

𝑢(𝑡+1) ← 𝜌 ⋅ 𝑢(𝑡)

Repeat until convergence is reached

6: Apply gamma correction: 𝑇 ← (𝑇 (𝑓𝑖𝑛𝑎𝑙))𝛾
7: Enhance image: 𝐼enhanced ← 𝐼∕𝑇
8: Normalize and convert 𝐼enhanced to uint8 format

9: Save enhanced image with identifier according to 𝛾
10: end for

11: end for

Algorithm 1 describes the process of augmenting the banana dataset 
through LIME. Initially, each original image from the dataset (𝐼𝑛) 
is individually loaded, and a set of predefined gamma values (Γ =
{0.1,0.2,0.3,0.4,0.5,0.6,0.7}) is utilized to generate multiple enhanced 
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Table 3
Number of real banana images per gamma level (Γ), with brightness progressively enhanced using the LIME model.

Banana Ripeness

Level

Γ = 0.1 Γ = 0.2 Γ = 0.3 Γ = 0.4 Γ = 0.5 Γ = 0.6 Γ = 0.7 Total 
Images

Level A 1,429 1,429 1,429 1,429 1,429 1,429 1,429 10,003

Level B 815 815 815 815 815 815 815 5,705

Level C 559 559 559 559 559 559 559 3,913

Level D 692 692 692 692 692 692 692 4,844

Fig. 3. Banana images showing progressive brightness enhancement as the gamma value (Γ) increases from 0.1 to 0.7, using the LIME model. 

versions with varying illumination conditions. In this context, higher 
gamma values result in brighter outputs, while lower values produce 
more subtle enhancements.

For each gamma value, the algorithm first estimates an initial illumi

nation map (𝑇̂ ) by computing the maximum intensity among the RGB 
channels for each pixel, providing a baseline for further refinement. Sub

sequently, structural constraints are applied to refine this illumination 
map, solving iteratively an optimization problem to ensure illumination 
consistency and image detail preservation. This iterative process up

dates the illumination map (𝑇 (𝑡+1)), gradient subproblem (𝐺(𝑡+1)), dual 
variable (𝑍(𝑡+1)), and scaling parameter (𝑢(𝑡+1)), continuing until con

vergence criteria ars satisfied, typically based on the Frobenius norm.

Once optimized, gamma correction is applied to the final illumi

nation map to adjust the brightness level depending on the selected 
gamma value, using the transformation 𝑇 ← (𝑇 (𝑓𝑖𝑛𝑎𝑙))𝛾 . The original im

age is then enhanced by dividing it pixel-wise by the gamma-corrected 
illumination map, significantly improving visibility under low-light con

ditions. Finally, enhanced images are normalized, converted to 8-bit 
unsigned integer format, and saved with filenames that indicate the ap

plied gamma values.

This method effectively generates an augmented dataset with con

trolled lighting variations, aiming to enhance the robustness and gen

eralization capabilities of DL models for banana ripeness classification 
under diverse illumination conditions (see Table 3 and Fig. 3).

2.4. Transfer learning

Transfer learning techniques are applied, utilizing synthetic image 
datasets to reduce the dependency on large volumes of real images. This 

Fig. 4. Transfer learning using synthetic dataset. 

methodology involves initially training DL models with synthetic im

ages, followed by fine-tuning with real images to train and validate the 
models. This approach allows the models to leverage weights obtained 
during the transfer phase [41], to improve their generalization ability 
and accuracy in classifying banana ripeness levels (see Fig. 4).

2.5. Deep learning models

The work here is based on applying DL models to extract essential 
features for banana ripeness classification during external fruit quality 
inspection [42]. This approach involves selecting DL models designed 
to accurately classify four banana maturity levels.

These DL models are selected based on a state-of-the-art review and 
trained with a suitable dataset of images for each banana ripeness level, 
following the indications provided by international standards for ex

ternal fruit quality inspection. Additionally, the use of techniques such 
as transfer learning and dataset variability is incorporated to enhance 
model effectiveness.
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Fig. 5. CIDIS model architecture. 

2.5.1. CIDIS model

The CIDIS model consists of repeated layers, including two convo

lution layers followed by a max-pooling layer, repeated three times, 
incorporating ReLU activation in hidden and fully connected layers (see 
Fig. 5). It receives RGB images of 224x224 pixels as input and produces 
four outputs, considering, for example, four levels of banana ripeness. 
The transfer learning technique is applied to this model, using weights 
learned from synthetic images, with the last fully connected layers re

moved and only these layers trained. The transfer learning model is 
optimized by adjusting hyperparameters, using dropout layers, modi

fying learning rates and batch sizes, and choosing between the Nadam 
and Adagrad optimizers. These optimizations lead to a robust model that 
predicts banana ripeness levels, which is finally evaluated on a dataset 
of real images. Previous results have indicated that the transfer learning 
model outperforms the model without transfer learning, trained only on 
real images [17].

2.5.2. Vision transformer model

The ViT architecture has emerged as a promising alternative to tra

ditional CNN models commonly used in image classification tasks. Re

cent studies indicate that ViT models can achieve superior performance 
compared to current state-of-the-art CNN architectures. One distinctive 
advantage of ViT architectures is their ability to capture global context 
from the very beginning of the network, unlike CNN models whose ini

tial receptive fields are inherently local and limited. Additionally, ViT 
models offer a high degree of parallelization, enabling more efficient 
computation, especially beneficial when processing large-scale image 
datasets. [43--45].

The attention mechanism enhances the relevant parts of the input 
data while fading out the rest. A self-attention module replaces the con

volutional layer, allowing the model to interact with pixels that are 

distant from its location. Self-attention is a mechanism that allows each 
element in a sequence to interact with others, determining to what they 
should give more attention. This distinctive behavior arises from includ

ing certain inductive biases in CNN models. In contrast, ViT models lack 
these biases, which they can leverage to quickly grasp the nuances of 
the analyzed images, even capturing global relationships, usually at the 
expense of requiring more extended data training [46,47].

The ViT model comprises multiple blocks. As a self-attention method, 
the MultiHeadAttention layer is applied to the sequence of patches. The 
Transformer blocks generate a tensor of shape (batch size, number of 
patches, projection dimension), which a SoftMax classifier head pro

cesses to produce the final class probability distributions for the output 
classes.

A detailed framework diagram of the ViT employed in this paper is 
presented in Fig. 6. Pioneering work by Han et al. [44] introduced the 
Transformer model to the computer vision domain, resulting in the de

velopment of the ViT architecture. This architecture consists of three 
core components: patch embedding, feature extraction using stacked 
Transformer encoders, and a classification head. ViT processes images 
by dividing them into smaller fixed-size ``patches'', significantly reduc

ing image dimensionality and enabling efficient handling of higher

resolution images compared to traditional models. Unlike conventional 
CNN-based approaches, ViT utilizes self-attention mechanisms to extract 
global image features, resulting in superior training performance even 
with limited data.

To illustrate, the initial input image, like that of a banana, is sub

divided into image patches (e.g., 16x16). Subsequently, these groups 
of image patches are embedded into encoded vectors and introduced 
into the Transformer encoder network. The Transformer encoder learns 
the features of these embedded patches through a stack of Transformer 
encoders [48]. The encoder primarily comprises multi-head attention 
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Fig. 6. Vision transformer model architecture [49,44]. 

(MHA) and a 2-multi-layer perceptron (MLP) with layer normalization 
and residual connections. The final MLP block, the MLP head, serves as 
the Transformer’s output. In the context of image classification, a Soft

max function at the output generates the classification results. Our study 
used the ViT-B/16 model (where B stands for Base, signifying a relatively 
small dataset; 16 indicates the input patch size of 16x16) trained using 
ViT.

The ViT models transform a sequence of image segments into a 
semantic label through the Transformer encoder module designed for 
classification tasks. Unlike traditional CNN architectures, which com

monly utilize filters with a limited receptive field, ViT employs an at

tention mechanism capable of selectively focusing on different regions 
of the image and interpreting information across its entirety. Due to 
these characteristics, ViT became the first image recognition model ca

pable of consistently outperforming conventional CNN architectures, 
especially those relying on constrained filter sizes. Structurally, the ViT 
architecture consists of three principal modules: an Embedding Layer, 
multiple Encoder blocks, and the final classification head layers [50]. 
Additionally, ViT’s performance notably benefits from pre-training on 
large datasets, followed by fine-tuning for specific downstream tasks. To 
further reduce training duration and enhance computational efficiency, 
transfer learning methodologies are typically employed in training orig

inal ViT models [51].

2.5.3. VGG19 model

The VGG19 model is a classic design in the field of image recognition, 
demonstrating high performance and precision across a wide range of 
tasks. It consists of 19 layers of depth, including 16 convolutional layers 
and 3 fully connected layers. A key feature of VGG19 is its use of small 
3x3 filters, allowing the network to be very deep, and learn hierarchi

cal representations of images. VGG19 has shown notable performance 
with high accuracy and relatively low training times, especially when 
compared to more complex models such as InceptionResNetV2 [52]. 
However, while effective, VGG19 can be less efficient in terms of com

putational consumption compared to newer models, due to its relatively 
simple architecture and large number of parameters.

2.5.4. ResNet50 model

ResNet models (Residual Networks) are known for their ability to 
train very deep networks without encountering the vanishing gradient 
problem, which is achieved by using residual connections. ResNet50, 
with its 50 layers, is used in this study for its ability to handle deeper 
networks without losing information, which is common in traditional 
networks when more layers are added. Residual connections allow infor

mation to flow directly through layers, making it easier to train deeper 
models and improving accuracy. In particular, ResNet-50 is well suited 
for tasks such as fruit ripeness classification, as it can learn high-level 
features from complex data. Furthermore, the combination of transfer 
learning and residual learning in this model has been reported to opti

mize network parameters and enhance system development, leading to 
better generalization and reducing overfitting [53].

2.5.5. Inception-ResNetV2 model

The Inception-ResNetV2 model combines two powerful architec

tures: Inception and ResNet. Inception is known for its ability to cap

ture information at different scales by using multiple filter sizes within 
the same layer, allowing the model to learn richer representations of 
images. On the other hand, ResNet contributes by enabling deeper net

works through residual connections. Inception-ResNetV2 incorporates 
both ideas, making it even more efficient and accurate. This model has 
164 layers, making it one of the deepest and most complex models in 
the field of computer vision. Its ability to handle different filter sizes 
and computational efficiency makes it ideal for complex image classifi

cation tasks, such as banana ripeness classification. Inception-ResNetV2 
has proven to be highly effective in reducing loss during training and 
has outperformed other Inception models in terms of accuracy [54]. Fur

thermore, by incorporating 1x1 convolutions and residual connections, 
it optimizes computational resource usage and helps prevent overfitting 
[55], making it a solid choice for tasks that require both precision and 
efficiency.

2.5.6. InceptionV3 model

The InceptionV3 model is a more efficient version of the Inception 
model, designed to reduce computational power consumption while 
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improving efficiency without compromising performance. This model 
is more efficient than previous versions, such as VGGNet and Incep

tionV1, due to its focus on reducing computational complexity through 
techniques such as dimensionality reduction with 1x1 convolutions. In

ceptionV3 optimizes the use of computational resources by combining 
multiple operations in a single layer, allowing faster training speeds 
and reduced memory requirements while maintaining high accuracy. In 
the context of the estimation of banana ripeness, InceptionV3 has been 
shown to be more efficient than other traditional models, delivering 
competitive results in terms of accuracy while keeping computational 
costs low [56].

2.6. Performance evaluation

This section presents the evaluation strategy used to analyze the 
effectiveness and robustness of DL models under varying illumination 
conditions. Performance was assessed using standard classification met

rics, which provide a comprehensive overview of DL model behavior, 
particularly in the presence of class imbalance [57,58]. In addition, the 
number of trainable parameters and the average inference time per im

age were considered to evaluate the computational efficiency of each 
DL model. These indicators enable a balanced assessment between pre

dictive performance and practical feasibility in real-world deployment 
scenarios [29].

Accuracy measures the proportion of correctly predicted instances 
out of the total number of examples in the dataset and is defined in 
Equation (1). Precision, Recall, and F1-score, defined in Equations (2), 
(3) and (4) respectively, are complementary metrics commonly used in 
classification tasks [59]. Given the imbalanced nature of the real-world 
dataset and the tendency of accuracy to favor the majority class, which 
can lead to biased results [60], this comprehensive evaluation approach 
ensures a more reliable assessment of model performance.

Accuracy = 𝑇𝑃 + 𝑇𝑁 
𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁

(1)

Precision = 𝑇𝑃 
𝑇𝑃 + 𝐹𝑃

(2)

Recall = 𝑇𝑃 
𝑇𝑃 + 𝐹𝑁

(3)

F1-score = 2 × Precision × Recall

Precision + Recall
(4)

where TP refers to true positives, TN to true negatives, FP to false posi

tives, and FN to false negatives.

Additionally, to evaluate the computing requirements of the models 
under varying lighting conditions, we considered not only the number of 
parameters but also the inference time during testing. These factors are 
relevant for assessing how cost effectively a model can handle real-world 
scenarios where lighting conditions may change dynamically [61]. The 
performance of the model under varying lighting conditions is not only 
about accuracy but also about how quickly and efficiently it can process 
the input data. In real-world applications, lighting variations can sig

nificantly affect performance [62], and the ability to maintain accuracy 
while processing efficiently is a key measure of robustness.

The number of parameters (𝑃 ) in a model influences the complex

ity and capacity of the model to capture intricate patterns (see Equa

tion (5)), but also directly impacts the computational cost during train

ing and inference [63]. The larger the model, the more resources it 
requires. Inference time (𝑇𝑖𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒) is critical to evaluate the speed at 
which the model processes each input (see Equation (6)), especially 
when working with large datasets or in real-time applications [64]. In 
our evaluation, we calculated the inference time per image for each 
model under different lighting conditions.

𝑃 =
𝐿 ∑

𝑙=1 

(
𝑛in
𝑙
× 𝑛out

𝑙
+ 𝑛out

𝑙

)
(5)

𝑇inference =
𝑡total
𝑁

(6)

where 𝑃 is the total number of trainable parameters, 𝐿 is the number 
of layers, 𝑛in

𝑙
and 𝑛out

𝑙
are the input and output units of layer 𝑙, 𝑇inference

is the average inference time per image, 𝑡total is the total time to process 
𝑁 images, and 𝑁 is the number of images evaluated.

3. Results and discussion

This section presents the results obtained by evaluating several DL 
models under varying illumination conditions for the classification of 
banana ripeness. Initial models (denoted as M0) were trained exclu

sively on data without illumination variations. These baseline models 
are evaluated first on a test dataset without lighting variation (I0), fol

lowed by seven additional test sets (I1 to I7) that introduce incremental 
illumination variations defined by Γ, ranging from 0.1 (I1) to 0.7 (I7). 
A comparative analysis of model performance is presented, using accu

racy, precision, recall, and F1-score metrics to identify the behavior of 
these models in response to gradual changes in image illumination.

For the initial conditions without illumination variation (I0), all eval

uated models demonstrate strong and consistent performance, largely 
due to the uniform lighting of the test images. This controlled environ

ment helps preserve the green–yellow chromatic balance that is critical 
for accurately identifying banana ripeness levels.

Analyzing Table 4, we observe that under conditions without illu

mination variation (I0), all models exhibit strong and stable results in 
terms of accuracy. Notably, the ViT model achieves the highest accu

racy (93.13%), closely followed by ResNet50 (92.99%). In contrast, 
InceptionV3 shows the lowest accuracy under this standard condition 
(89.84%). Precision, recall, and F1-score metrics under the baseline 
condition are consistent with accuracy, maintaining values above 89% 
across most models.

The ViT model stands out with the highest accuracy (93.13% un

der I0), a result attributed to its global attention mechanism, which 
captures broader spatial and contextual relationships across the image, 
especially beneficial when training data is limited. In contrast, Incep

tionV3, which relies on localized receptive fields, achieves only 89.84% 
under the same conditions and thus performs less effectively in this con

text. These findings emphasize that, under ideal lighting, color fidelity 
and dataset quality are key factors driving performance in ripeness clas

sification.

Under low illumination variations (I1 to I3, corresponding to Γ = 0.1
to 0.3), ResNet50 and CIDIS models maintain consistent and robust per

formance, each achieving accuracies above 90%, with CIDIS showing 
peak accuracy at 92.85% in I1. The ViT model, however, exhibits a no

ticeable decrease in accuracy starting from I2 (83.83%), demonstrating 
sensitivity to small lighting variations. The VGG19 model maintains ac

ceptable accuracy through I2 but experiences a significant drop at I3, 
achieving only 79.97% accuracy, suggesting limited robustness to mod

erate illumination changes.

This behavior can be explained by the architectural design and gen

eralization mechanisms of each model. ResNet50, with its residual con

nections, facilitates the learning of robust features that remain stable 
under slight illumination shifts, allowing it to sustain high performance 
even when lighting conditions are subtly altered. Although CIDIS does 
not incorporate residual connections, it is specifically designed as a 
lightweight and efficient model that effectively preserves key discrimi

native features, which may account for its stability under low illumina

tion variation. In contrast, the ViT model, while excelling under ideal 
conditions due to its global attention mechanism, exhibits sensitivity 
to slight lighting changes, possibly because such variations affect the 
chromatic consistency across the patches it processes. VGG19, lacking 
mechanisms to compensate for illumination shifts, begins to degrade in 
performance as images deviate from the original training conditions. 
This decline reflects a limited capacity to adapt to alterations that di

rectly impact the green–yellow chromatic balance, which is essential for 
correctly estimating the ripeness level of bananas.
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Table 4
Performance metrics of DL models for banana-ripeness classification, trained on 
the baseline set M0 (no illumination variation) and evaluated on test sets I0--I7, 
where progressively higher gamma values (Γ = 0.0--0.7) are applied with LIME 
model to increase image brightness.

Illumination Model Accuracy Precision Recall F1 Score 
M0_I0 

VIT

0.9313 0.9310 0.9313 0.9310 
M0_I1 0.8956 0.8981 0.8956 0.8957 
M0_I2 0.8383 0.8425 0.8383 0.8388 
M0_I3 0.8813 0.8895 0.8813 0.8822 
M0_I4 0.8884 0.8996 0.8884 0.8882 
M0_I5 0.7210 0.7479 0.7210 0.7262 
M0_I6 0.8598 0.8902 0.8598 0.8601 
M0_I7 0.7396 0.8125 0.7396 0.7312

M0_I0 

ResNet50

0.9299 0.9318 0.9299 0.9304 
M0_I1 0.9227 0.9254 0.9227 0.9235 
M0_I2 0.9185 0.9196 0.9185 0.9185 
M0_I3 0.8970 0.9062 0.8970 0.8984 
M0_I4 0.7639 0.7771 0.7639 0.7651 
M0_I5 0.7983 0.8454 0.7983 0.7974 
M0_I6 0.8569 0.8796 0.8569 0.8563 
M0_I7 0.8169 0.8472 0.8169 0.8171

M0_I0 

InceptionResNetV2

0.9242 0.9246 0.9242 0.9243 
M0_I1 0.9213 0.9224 0.9213 0.9215 
M0_I2 0.9027 0.9050 0.9027 0.9032 
M0_I3 0.8727 0.8901 0.8727 0.8749 
M0_I4 0.8870 0.9019 0.8870 0.8886 
M0_I5 0.8598 0.8808 0.8598 0.8620 
M0_I6 0.8469 0.8643 0.8469 0.8477 
M0_I7 0.8255 0.8711 0.8255 0.8229

M0_I0 

CIDIS

0.9227 0.9237 0.9227 0.9231 
M0_I1 0.9285 0.9285 0.9285 0.9283 
M0_I2 0.9099 0.9143 0.9099 0.9109 
M0_I3 0.9013 0.9071 0.9013 0.9015 
M0_I4 0.8712 0.8775 0.8712 0.8718 
M0_I5 0.8755 0.8975 0.8755 0.8768 
M0_I6 0.6781 0.7401 0.6781 0.6903 
M0_I7 0.8255 0.8605 0.8255 0.8220

M0_I0 

VGG19

0.9070 0.9062 0.9070 0.9062 
M0_I1 0.9199 0.9215 0.9199 0.9203 
M0_I2 0.8884 0.8937 0.8884 0.8885 
M0_I3 0.7997 0.8068 0.7997 0.7998 
M0_I4 0.8255 0.8628 0.8255 0.8250 
M0_I5 0.8755 0.8897 0.8755 0.8744 
M0_I6 0.7611 0.8224 0.7611 0.7567 
M0_I7 0.6381 0.7205 0.6381 0.6498

M0_I0 

InceptionV3

0.8984 0.8996 0.8984 0.8986 
M0_I1 0.8727 0.8745 0.8727 0.8729 
M0_I2 0.9070 0.9129 0.9070 0.9082 
M0_I3 0.8870 0.8923 0.8870 0.8879 
M0_I4 0.8655 0.8808 0.8655 0.8671 
M0_I5 0.8627 0.8708 0.8627 0.8632 
M0_I6 0.8512 0.8788 0.8512 0.8541 
M0_I7 0.8255 0.8680 0.8255 0.8300 

As illumination variation is increased significantly (I4 to I7, corre

sponding to Γ = 0.4 to 0.7), all DL models exhibit substantial declines in 
performance across all evaluated metrics. This degradation is primarily 
attributed to the distortion of key chromatic features, particularly the 
green–yellow hue relationship, which is essential for accurately clas

sifying banana ripeness. Excessive brightness tends to saturate these 
color channels, compromising the discriminative cues that models rely 
on. For instance, VGG19, which strongly depends on color-based fea

tures, is the most affected, reaching its lowest accuracy of 63.81% at 
I7. ResNet50 suffers a noticeable drop at I4 (76.39%) but demonstrates 
partial recovery at I6 and I7, likely due to its residual connections that 
help maintain feature consistency despite input distortions. Similarly, 
the CIDIS model, while efficient, lacks architectural mechanisms to han

dle extreme lighting, leading to unstable performance, especially at I6 
(67.81%). The ViT model, although initially robust in I4 (88.84%) due 

to its global attention mechanism, exhibits significant fluctuations un

der more severe conditions, dropping to 73.96% in I7, likely a result 
of losing patch-wise attention coherence in unevenly illuminated re

gions. In contrast, Inception-based models such as InceptionResNetV2 
and InceptionV3 show a more gradual accuracy decline, maintaining ap

proximately 82% even under strong illumination shifts, suggesting that 
their multiscale feature extraction offers some resilience to chromatic 
distortions.

Precision, recall, and F1-score metrics consistently follow the same 
patterns observed in accuracy across all illumination conditions, rein

forcing the conclusion that lighting variation systematically affects the 
overall performance of DL models. These metrics, which evaluate the 
model’s ability to correctly identify relevant classes and reduce false pos

itives or negatives, are particularly sensitive to distortions in the visual 
features that guide classification. For example, ResNet50 maintains sta

ble precision and recall values above 84% in most scenarios, except for 
extreme lighting conditions (I4 and I5), a robustness largely attributed to 
its residual connections that help preserve consistent feature representa

tions. In contrast, the ViT model exhibits greater variability, especially 
in recall, which drops below 74% in I5 and I7. This decline suggests that 
the patch-based self-attention mechanism of ViT may struggle with lo

cal brightness inconsistencies, leading to reduced spatial coherence in 
the learned representations and ultimately affecting classification accu

racy. Overall, the degradation of precision, recall, and F1-score under 
varying lighting confirms the importance of robustness in feature ex

traction for maintaining classification reliability in non-uniform visual 
environments.

From a global perspective, the results reveal that all evaluated mod

els perform reliably under ideal lighting conditions (I0), maintaining 
high accuracy and consistent behavior across metrics. However, when il
lumination variability increases, particularly from Γ = 0.4 onward, most 
models begin to exhibit noticeable decrease in performance. This trend 
is reflected in reduced accuracy, precision, recall, and F1-score for the 
majority of the architectures. The varying degrees of sensitivity among 
the models suggest that their ability to generalize is closely related to 
the distribution and diversity of lighting conditions encountered dur

ing training. Therefore, these results underscore the critical need to 
incorporate controlled lighting variability into the dataset during train

ing. Doing so enhances the robustness of the models and prepares them 
for deployment in real-world environments where illumination is rarely 
consistent.

Fig. 7 illustrates the performance behavior of the ResNet50, ViT, 
VGG19, CIDIS, InceptionResNetV2, and InceptionV3 models for differ

ent levels of illumination variation, ranging from I0 (no variation, Γ = 0) 
to I7 (maximum variation, Γ = 0.7). Accuracy was chosen as the met

ric for visualization, presented as continuous lines with specific markers 
for each model to facilitate comparative evaluation.

Under ideal conditions (I0), the graph shows that all models start 
with high accuracy values, with minimal differences between them. 
However, when illumination variation increases slightly (levels I1--I3), a 
clear differentiation in the performance curves of each model emerges. 
ResNet50 and CIDIS exhibit visually stable performance, characterized 
by a gentle and steady downward slope, indicating notable robustness 
against slight illumination changes. In contrast, the ViT model curve 
displays a visibly sharper decrease in accuracy starting at the I2 level, 
suggesting early sensitivity to moderate illumination variations. Simi

larly, VGG19 initially shows stable behavior but rapidly deteriorates at 
level I3.

At intermediate to high illumination variations (levels I4--I7), the 
graph highlights diverse patterns across the models. The VGG19 model 
demonstrates the steepest and most continuous decline, reaching the 
lowest accuracy level at I7 and indicating limited adaptability to ad

verse lighting conditions. CIDIS similarly presents a notable negative 
slope from I4 to I6 but slightly improves visually toward I7. The ViT 
model is characterized by pronounced fluctuations, visually alternating 
between significant drops and partial recoveries between consecutive 
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Fig. 7. Accuracy of DL models evaluated under illumination variation levels Γ = 0.0 to Γ = 0.7. 

variation levels. ResNet50 experiences a clear visual drop at I4 but 
subsequently stabilizes, displaying slight accuracy recoveries in later 
conditions (I6--I7). InceptionResNetV2 and InceptionV3 curves appear 
visually smoother, showing a more gradual and consistent decline across 
all illumination variations.

Overall, the graph clearly demonstrates that, despite starting from 
comparably high accuracies under ideal illumination conditions, the 
models visually diverge significantly as illumination variation increases. 
ResNet50 and CIDIS stand out visually for their consistent performance 
under moderate variations (Γ ≤ 0.3), suggesting robust generalization 
capability under these conditions. InceptionResNetV2 and InceptionV3 
curves exhibit smoother and less abrupt reductions, visually indicating 
relatively greater resilience under substantial illumination variability 
(Γ ≥ 0.4). Conversely, the ViT model visually reveals high variabil

ity and sensitivity to moderate and high illumination fluctuations. The 
VGG19 model clearly emerges visually as the least robust, exhibiting a 
continuous and significant decline in accuracy across increasing illumi

nation variations. This visual analysis effectively highlights each model’s 
distinct dynamic behavior, guiding informed model selection depending 
on anticipated illumination conditions in practical applications.

Table 5 reports the top-1 accuracy obtained by each DL model when 
trained either on the baseline set without illumination changes (M0) 
or on the fully augmented set that includes synthetic lighting varia

tion (MG), evaluated for two test conditions: I0 (no variation) and IG 
(gamma-augmented). These tests allow us to quantify both the robust

ness loss caused by unseen lighting changes and the robustness gain 
provided by training with augmented data. The results are graphically 
represented in Fig. 8.

The results reveal significant differences in how DL architectures re

spond to illumination variability. DL models such as InceptionV3 exhibit 
a marked drop in accuracy, suggesting higher sensitivity to changes not 
represented in the training set. This performance degradation may be 
attributed to the model’s architectural complexity and its tendency to 
overfit specific features of the data. In contrast, models like ViT and 
CIDIS, which employ a combination of convolutional and dense lay

ers, demonstrate greater resilience to illumination changes, although 
they also experience accuracy losses, indicating that their generaliza

tion capacity is not entirely robust to complex input transformations. 
Deeper architectures, such as ResNet50 and InceptionResNetV2, despite 
their expressive power, show considerable performance drops, suggest

ing that their ability to learn deep representations makes them more 

Table 5
Accuracy of each DL model under illumination variation; M0 
denotes models trained on non-augmented data, whereas MG 
refers to models trained with illumination-augmented data.

Illumination Model Accuracy 
M0_I0 

ViT

0.9313 
M0_IG 0.8907 
MG_I0 0.9299 
MG_IG 0.9290

M0_I0 
CIDIS

0.9227 
M0_IG 0.8872 
MG_I0 0.9242 
MG_IG 0.9224

M0_I0 
ResNet50

0.9299 
M0_IG 0.8446 
MG_I0 0.9256 
MG_IG 0.9272

M0_I0 
InceptionResNetV2

0.9242 
M0_IG 0.8791 
MG_I0 0.9156 
MG_IG 0.9219

M0_I0 
InceptionV3

0.8984 
M0_IG 0.7763 
MG_I0 0.9156 
MG_IG 0.9188

M0_I0 
VGG19

0.9070 
M0_IG 0.8718 
MG_I0 0.9056 
MG_IG 0.9101 

Note: ``M0_I0'' and ``M0_IG'' refer to models trained on non

augmented data and tested on images with no illumination 
change or gamma augmentation, respectively. ``MG_I0'' and 
“MG_IG'' refer to models trained with gamma-based illumina

tion augmentation and tested on images with no change or with 
gamma augmentation, respectively.

susceptible to overfitting and less capable of generalizing to unseen con

ditions.

The substantial performance recovery observed when models are 
trained with gamma-augmented data can be attributed to the enhanced 
diversity in illumination conditions present during training, which en

ables the DL models to learn more invariant and generalizable feature 
representations. Architectures such as InceptionV3, which initially ex
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Fig. 8. Accuracy of the six DL models (ResNet50, ViT, VGG19, CIDIS, InceptionResNetV2, and InceptionV3) evaluated on the four illumination conditions used in this 
study. M0_I0 and M0_IG correspond to models trained without illumination augmentation, whereas MG_I0 and MG_IG denote models trained with gamma-augmented 
data (Γ = 0.0--0.7). The dashed vertical line separates the models trained on non-augmented data (left) from those trained with illumination-augmented data (right).

hibited the highest sensitivity to illumination changes, benefit the most 
from this augmentation, as the exposure to a broader range of lighting 
conditions mitigates their tendency to overfit to specific brightness and 
contrast patterns. Similarly, ResNet50, CIDIS, and InceptionResNetV2 
show significant improvements, suggesting that their feature extraction 
mechanisms can adapt effectively when provided with sufficiently var

ied training data. The relatively smaller gain observed in ViT, despite 
its strong baseline performance, may indicate that its attention-based 
mechanism already captures robust global features that are less affected 
by local lighting variations.

Fig. 8 provides a visual counterpart to Table 5, showing the same 
accuracy values as grouped bar charts.

The left block (M0) clearly evidences the vulnerability of all mod

els when exposed to illumination conditions not seen during training. 
The observed performance drops highlight a consistent lack of robust

ness, particularly in architectures that appear to overfit to the original 
lighting distribution. Although some models exhibit a relatively milder 
decline, none are immune to the effects of gamma-based augmentation, 
underscoring a fundamental limitation in their ability to generalize un

der realistic lighting variability. These findings stress the importance of 
incorporating illumination diversity during training to mitigate sensi

tivity to domain shifts.

The right block (MG) demonstrates the clear benefits of training with 
illumination-augmented data. All architectures show a notable improve

ment in robustness under challenging lighting conditions, while main

taining strong performance under standard settings. This consistency 
suggests that the models effectively internalize illumination-invariant 
features when exposed to a broader range of visual conditions during 
training. Notably, the relative differences between models narrow, indi

cating that data augmentation helps level the playing field and mitigates 
the vulnerabilities previously observed in more sensitive architectures.

Together with the numerical evidence, the figure makes it visually 
explicit that illumination augmentation converts the pronounced accu

racy drop of the M0 models into a negligible gap, underscoring the 
need to use diverse lighting data when deploying classifiers of banana 
ripeness in real-world settings.

Table 6 summarizes the average inference time per image (in mil

liseconds) and the model complexity (in number of parameters, mil

lions) for each architecture on the IG test set. For every model, two rows 
are presented: M0_IG corresponds to training on the baseline dataset 

Table 6
Average inference time per image on the IG test set and model complexity (in 
number of parameters, millions). Each block compares the model trained with

out illumination augmentation (M0_IG) versus the same model trained with 
gamma-augmented data (MG_IG).

Illumination Model Avg. inference (ms) # Params (M) 
M0_IG 

ViT
3.266 

10.7
MG_IG 2.083 
M0_IG 

VGG19
2.535 

21.07
MG_IG 2.520 
M0_IG 

CIDIS
2.689 

1.9
MG_IG 2.664 
M0_IG 

InceptionResNetV2
2.678 

56.43
MG_IG 2.748 
M0_IG 

ResNet50
3.504 

26.21
MG_IG 3.383 
M0_IG 

InceptionV3
3.891 

24.42
MG_IG 3.790 

Note: M0_IG refers to the average inference time for models trained on non

augmented data and tested on gamma-augmented images (IG). MG_IG refers to 
the average inference time for models trained with gamma-based illumination 
augmentation and tested on gamma-augmented images. ``# Params (M)'' indi

cates the total number of trainable parameters in millions.

without illumination augmentation, while MG_IG denotes the same ar

chitecture retrained with gamma-augmented data.

The combined analysis of inference time and model complexity in

dicates that the introduction of illumination augmentation does not 
substantially compromise computational efficiency across the evaluated 
architectures. ViT exhibits the most noticeable improvement, highlight

ing the potential of attention-based models to enhance processing effi

ciency when exposed to variability in visual conditions. ResNet50 and 
InceptionV3 demonstrate minor improvements, suggesting that deeper 
convolutional architectures benefit modestly from data augmentation 
without incurring additional computational costs. Conversely, CIDIS 
and VGG19 present negligible variations in inference time, implying an 
intrinsic robustness to illumination changes but also suggesting limited 
capacity for further optimization through augmentation. Notably, In

ceptionResNetV2 experiences a slight increase in inference time, which 
may be attributed to the higher computational demands associated with 
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Table 7
Comparative summary of model complexity, hyperparameters, inference time, transfer-learning accuracy (Acc (reported)) and illumination-variation performance for 
banana-ripeness classifiers.

Model #Params (M) Optimizer Dropout LR Batch Inf M0_IG (ms) Inf MG_IG (ms) Acc (reported) [17] Acc M0_IG Acc MG_IG 
VGG19 21.07 Adagrad 0.2 1e-3 64 2.54 2.52 0.562 0.8718 0.9101 
ResNet50 26.21 Adagrad 0.2 1e-3 64 3.50 3.38 0.816 0.8446 0.9272 
InceptionResNetV2 56.43 Adagrad 0.2 1e-3 64 2.68 2.75 0.869 0.8791 0.9219 
InceptionV3 24.42 Adagrad 0.2 1e-3 64 3.89 3.79 0.849 0.7763 0.9188 
CIDIS (proposed) 1.90 Adagrad 0.2 1e-3 50 2.69 2.66 0.917 0.8872 0.9224 
ViT 10.70 AdamW 0.1 1e-4 64 3.27 2.08 -- 0.8907 0.9290 

its hybrid architecture, where the integration of inception modules and 
residual connections intensifies the complexity of feature extraction un

der augmented conditions.

Building on these observations, Table 7 provides a consolidated 
comparison of each architecture’s key characteristics and performance 
trade-offs. It details the number of trainable parameters (in millions), 
the transfer-learning hyperparameters (optimizer, learning rate, dropout 
rate, and batch size), and the average inference times under non

augmented (M0_IG) and illumination-augmented (MG_IG) conditions. 
The column ``Acc (reported)'' reports the best transfer-learning accura

cies on real data from Chuquimarca et al. [17], while ``Acc M0_IG'' and 
“Acc MG_IG'' display test accuracies without and with synthetic lighting 
augmentation, respectively. This integrated view highlights how model 
complexity, computational efficiency, and predictive robustness interact 
to inform the selection of the most suitable DL architecture for practical, 
real-time post-harvest deployments.

ViT trained with illumination augmentation (MG_IG) achieves over 
92.9% accuracy with an average inference time of 2.08 ms per image, 
demonstrating the most effective balance between robustness and com

putational efficiency for real-time banana ripeness grading under vari

able lighting conditions.

LIME surpasses traditional preprocessing methods such as CLAHE, 
Retinex, Color Jitter, white balance correction and HSV channel extrac

tion by adaptively enhancing illumination without generating artifacts 
or distorting the critical green to yellow chromatic balance. CLAHE can 
introduce local over enhancement while Retinex and Color Jitter may 
shift hue distributions. LIME does not require paired training data and 
it avoids oversaturation of vital channels. White balance correction ad

dresses only global tone shifts and HSV extraction sacrifices luminance 
cues. In contrast, LIME preserves original color fidelity and produces 
realistic brightness variations in a controlled manner, resulting in sta

ble illumination invariant features that strengthen ripeness classification 
without compromising the essential chromatic information.

4. Conclusion

Training banana-ripeness classifiers on pristine images results in 
high baseline accuracy but reveals a significant flaw: the models exhibit 
a sharp decline in performance when exposed to gamma-altered inputs. 
This highlights a critical overfitting issue, where the models are overly 
reliant on clean data and fail to generalize well under real-world con

ditions. The stark performance drops when exposed to variable lighting 
suggest that these architectures are not inherently robust to illumina

tion changes, which is a major limitation for practical deployment in 
automated grading tasks.

The augmentation strategy using gamma-based transformations sig

nificantly improves robustness, with all models, regaining and even ex

ceeding their original accuracy. However, the improvements vary across 
architectures, with some models like InceptionV3 showing the largest 
relative gains, yet still struggling with poor performance for challenging 
lighting conditions. ViT, ResNet50, and CIDIS do show solid improve

ments, but their underlying architectures seem to remain somewhat 
ill-suited for dealing with lighting variability. Their gains, although 
notable, do not completely resolve their vulnerability to illumination 

changes, indicating a fundamental weakness in their design for this par

ticular task.

Furthermore, although the models exhibit improved robustness with

out a substantial compromise in inference time, the trade-off between 
computational efficiency and predictive performance remains nontriv

ial. ViT and ResNet50 achieve a favorable balance between accuracy 
and processing speed; however, their elevated computational demands 
could limit their deployment in real-time or resource-constrained envi

ronments. While the benefits of illumination augmentation are evident, 
they are insufficient to fully overcome the models’ vulnerabilities under 
extreme or unforeseen lighting conditions. Thus, despite advances in 
robustness, the long-term reliability of these architectures in dynamic, 
real-world scenarios remains an open challenge.

The ranking shift in models when tested under a wider set of illumi

nation conditions further emphasizes the limitations of traditional eval

uation methods. CIDIS and InceptionResNetV2, initially poor perform

ers, show improvement under augmented training, which challenges the 
idea that performance on clean data should be the primary criterion for 
selecting models for deployment. It underscores the need for evaluations 
that reflect the complexities of real-world environments, where lighting 
variability plays a pivotal role in performance.
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