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Abstract. IoT (Internet of Things) and AI (Artificial Intelligence) are becoming 

support tools for several current technological solutions due to significant ad-

vancements of these areas. The development of the IoT in various technological 

fields has contributed to predicting the behavior of various systems such 

as mechanical, electronic, and control using sensor networks. On the other 

hand, deep learning architectures have achieved excellent results in complex 

tasks, where patterns have been extracted in time series. This study has re-

viewed the most efficient deep learning architectures for forecasting and obtain-

ing trends over time, together with data produced by IoT sensors. In this way, it 

is proposed to contribute to applications in fields in which IoT is contributing 

a technological advance such as smart cities, industry 4.0, sustainable agricul-

ture, or robotics. Among the architectures studied in this article related to the 

process of time series data we have: LSTM (Long Short-Term Memory) for its 

high precision in prediction and the ability to automatically process input se-

quences; CNN (Convolutional Neural Networks) mainly in human activity 

recognition; hybrid architectures in which there is a convolutional layer for data 

pre-processing and RNN (Recurrent Neural Networks) for data fusion from dif-

ferent sensors and their subsequent classification; and stacked LSTM Autoen-

coders that extract the variables from time series in an unsupervised way with-

out the need of manual data pre-processing.Finally, well-known technologies in 

natural language processing are also used in time series data prediction, such as 

the attention mechanism and embeddings obtaining promising results. 

Keywords: time series, deep learning, recurrent networks, sensor data, IoT. 

1. Introduction 

The IoT (Internet of things) is formed by many connected devices and transmit vast 

amounts of data [1]. It is currently being applied in fields like agriculture [2, 3], smart 

cities [4], smart homes [5, 6], health care [7, 8], and human activity recognition [9, 
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10]. As time goes by, these IoT sensors are used, more insights can be obtained from 

them that may help to predict the behavior of systems which is useful for systems 

maintenance [11, 12], yield performance [13, 14], resource allocation [15], or busi-

ness planning [16]. Deep neural networks have achieved state-of-the-art results in 

complex tasks like image recognition [17] using CNN [18], human language under-

standing [19] using LSTM [20], or gaming [21] with reinforcement learning [22]. It is 

relevant to understand how well deep learning algorithms can extract patterns in time 

series and what trends those algorithms can find. When designing a deep learning 

architecture for time series forecasting, RNN and LSTM networks are considered, but 

CNN networks are also used to report good results [23]. Accordingly, this paper aims 

to analyze what deep learning architectures are being utilized to forecast time se-

ries, their applications, efficiency, challenges, and trends in time.   

The rest of this paper is structured as follows: Section 2 describes the research 

methodological framework; section 3 shows the results obtained; section 4 presents 

the limitations and future work, and section 5 concludes the article. 

2. Materials and Methods 

We used Barbara Kitchenham's methodology [24], which includes: formulation of 

research questions, search process, inclusion and exclusion criteria, data extraction, 

and data analysis and classification. The following research questions were posed to 

attain this purpose:  

• RQ1: What deep learning architectures are being used in projects involving 

time series in sensor data, and what are their application and efficiency?  

• RQ2: What challenges are found in projects with time series in sensor data?  

• RQ3: What trends are found in the applied methodologies in projects with 

sensor data and time series?  

A manual search on the Science Direct, Google Scholar, and Springer databases was 

conducted. The search was performed in June 2020. The search string was the follow-

ing: “deep learning” AND “sensor data” AND “time series”. Additionally, only scien-

tific papers written in English and later than 2016 were considered.  

From the first search process, 8033 articles were extracted (532 Science Direct, 61 

Springer, 7440 Google Scholar). After that, the extraction process resulted in 40 arti-

cles with the following year distribution: 2016 (3 articles), 2017 (11 articles), 2018 

(10 articles), 2019 (10 articles), and 2020 (6 articles).  

The data analysis and classification steps are explained below.   

1. Reading the abstracts and conclusions.   

2. Searching for each criterion within the complete content of the articles.    

3. Reading the whole article when necessary. 

4. Classifying articles by criteria.  
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3. Results 

3.1      First query results  

Table 1 is presented to answer the RQ1. This table includes the list of analyzed pa-

pers, their application, the deep learning architecture, and efficiency.  

Table 1. List of analyzed papers  

Paper 

id 

Application Year Deep learning 

architecture 

Efficiency 

P001 Water quality monitoring network  2019 LSTM  69.2%, 70.3%, 98.3%, and 

76% improvement in 

RMSE, MAE, MAPE, 

SMAPE  

P002 Generate sensory data for a deep learn-

ing-based discriminator model 

2017 LSTM - MDN Discriminator distin-

guishes 50%.  

P003  Indoor Air Quality Analysis 2017 GRU LSTM  84.69% accuracy  

P004  Heterogeneous Human activity recog-

nition, user identification with motion 

analysis, car tracking with motion 

sensors  

2017 CNN GRU 99.7% accuracy  

P005  Real-time activity classification.  2016 CNN spectro-

gram  

85% accuracy  

P006  Human emotion classification  2019 CNN LSTM  95% accuracy  

P007  Machinery fault diagnosis  2017 DNN 100% accuracy  

P008  Predictive monitoring of production 

processes  

2017 LSTM FFNN 87% accuracy  

P009  Human activity recognition  2016 CNN 94.79% accuracy  

P010  Human activity recognition based on 

mobile sensor data  

2020 DRN CNN 

GAF  

96 % accuracy  

P011  Driving behavior identification  2019 CNN, LSTM, 

GRU 

97% accuracy  

P012  Marine sensor data prediction  2020 DBEN  91% accuracy  

P013  Predicts if participants would attend to 

a notification within 10 minutes  

2017 RNN 40% improvement respect 

to random baseline   

P014  Forecasting the future use of energy for 

the home appliances  

2017 GMDH 63.23 RMSE  

P015  Machine health monitoring (MHM)   2018 CONV 

LSTM  

8.39 RMSE  

P016  Atrial fibrillation detection using wear-

ables.   

2018 CONV 

LSTM  

False positive and false 

negative rates below 2 × 

10−3  

P017  Aircraft hard-landing prediction   2018 LSTM  1.1×10−3 MSE  

P018  Multimodal sensor fusion for human 

activity recognition  

2019 LSTM   94.46%,  accuracy  

P019  Anomaly detection  2017 LSTM  97%, 95%, 97% accuracy  

P020  Predicting remaining useful life of 

machines  

2017 GRU RNN  466 MSE  

P021  Monitor the performance degradation 

of commercial aircraft air conditioning 

2020 LSTM  0.0466 error  
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systems (ACS)  

P022  Construction equipment activity recog-

nition  

2019 LSTM    79.9%, 96.7% accuracy  

P023  Aircraft landing speed prediction   2018 LSTM  3.5 RMSE  

P024  Data augmentation using synthetic data 

for time series classification  

2018 CNN  97% accuracy  

P025  Remaining useful life RUL prediction 

model  

2019 CNN  2.5, 6.41, 3.25E-03, 10.72, 

6.26, 3.12, 19.02 RMSE  

P026  Time series classification with multi-

variable data. 

2018 CNN  97.4%, 97.7% accuracy  

P027  Human activity recognition with iner-

tial sensors  

2016 CNN  97.01% accuracy  

P028  Human activity recognition from iner-

tial sensor time series  

2018 LSTM  92% accuracy  

P029  Multi time series anomaly detection  2019 CNN RNN  Anomalies reduced by 3%  

P030  Landslide hazard prediction  2018 LSTM, BPNN 81.2%, 62% accuracy  

P031  Data-driven anomaly detection for 

UAV sensors  

2019 LSTM  99% accuracy  

P032  Recovering missing air quality data  2018 LSTM    0.63, 2.90, 1.87 MAE  

P033  Missing sensor data prediction in IoT  2020 LSTM  0.07, 0.08, 0.17 RMSE  

P034  Time series data for equipment reliabil-

ity analysis.   

2020 FFNN  75%, 82%, 85%, 79%, 

80% accuracy  

P035  Recognizing and forecasting the under-

lying high-level states from raw senso-

ry data for activity recognition  

2017 CNN LSTM  87.47%, 80.21% accuracy  

P036  Sleep apnea severity detection   2017 LSTM-RNN  100%, 99.9% accuracy  

P037  Activity recognition via multichannel 

sensor data.  

2020 CNN LSTM  0.755, 0.933, 0.918 F1 

score  

P038  Mobile application usage prediction  2019 LSTM  89.55%, 95.53% accuracy  

P039  Wearable-based Parkinson’s disease 

severity monitoring  

2019 FCN  84.3% accuracy  

P040  Classify the dangerous levels of me-

thane concentration.   

2019 RBM DBN  97.6%, 99.2%, 96.3% 

accuracy  

 
Acronyms: Bi-LSTM Bidirectional Long Short-Term Memory; GRU Gated Recurrent Units; 

FCNN Fully Connected Neural Network; GAN Generative Adversarial Networks; DFNN Deep 

Feedforward Neural Networks; LSTM Long Short-Term Memory; DBEN Deep Belief Echo 

State Network; RNN Recurrent Neural Networks; BPNN Back Propagation Neural Networks; 

DRN Deep Residual Networks; CNN Convolutional Neural Networks; DAE  Deep Autoen-

coder; FCN Fully Convolutional Net; DBN Deep Belief Networks. 

 

Deep learning architectures. It can be seen in Fig. 1 that LSTM is the most 

used architecture. LSTM networks can automatically learn high-level representative 

features containing the long-range temporal relationships. Stacked LSTM autoencod-

ers extract the features from time series in an unsupervised manner avoiding the man-

ual feature engineering. CNN are preferred for human activity recognition. Human 

activities are hierarchical because complex activities are composed of basic actions. 

Human activities are also translation-invariant because different people perform the 

same activity differently. A fragment of an activity can be performed at different 
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points in time. CNN can address raw temporal signals in machine health monitoring 

(MHM) tasks without any time-frequency transformation.  Convolutional kernels can 

be thought of as signal filters and remove the need for manual signal processing; in 

more complex architectures, CNN is used for feature extracting while RNN is used 

for time series classification. 

Embeddings (numerical vectors that represent features of a system) can be used for 

prediction. The embeddings of two machines (P020) with similar operational behavior 

are close to each other. Heart rhythm embedding (P016) for both Afib (Atri-

al Fibrillation) and NSR (Normal Sinus Rhythm) vary between patients, so unsuper-

vised clustering applied to heart rhythm embeddings can improve the model's accura-

cy. Furthermore, paper P015 explains that fully connected structures of DAE and 

DBN may lead to high computation costs and overfitting problems caused by huge 

model parameters. To avoid those disadvantages, they use a hybrid Conv LSTM ar-

chitecture for machine health monitoring. 

 

 
Fig.1. Deep learning architectures and their applications  

 

Multi-modal data fusion architectures. In paper P004, the authors present a multi-

modal data fusion model for car tracking with motion sensors (accelerometer, gyro-

scope, magnetometer, and GPS for the ground truth), heterogeneous human activity 

recognition (accelerometer, gyroscope), and user identification with biometric motion 

analysis (accelerometer, gyroscope). The Fourier transform is used to ob-

tain the frequency dimension. A CNN extracts local features within each sensor mo-

dality and merges the local features into global features hierarchically; a stacked GRU 

extracts temporal dependency. In paper P006, they achieve motion detection fusing 

various sensor modalities: on-body, environment, and location data. Two convolu-

tional layers analyze the concatenated data. After that, a fully convolutional layer is 

used, then a LSTM layer processes the temporal information, and a softmax layer is 

used for classification. The model gets better performance than single CNN and 

LSTM. In paper P010, they use multi-modal data fusion for human activity recogni-

tion. The model encodes sensor data as images using GAF (Gramian Angular Fields), 

representing time series data in polar coordinates instead of the Cartesian coordi-

nates. A CNN analyzes the image representation of each sensor's data. The model 

performs better than random forests, SVM, restricted Boltzmann machines, FCNN 

and LSTM. In paper P018, the authors use multi-modal data fusion for human activity 
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prediction. The data from on-body IMU devices (tri-axial accelerometer, gyroscope, 

and magnetometer) are analyzed individually by an LSTM classifier; the results from 

each sensor modality are used as features for a model that integrates the results, ap-

plying simple soft-voting based on the weighted average of class probabilities (soft-

voting gets higher overall performance than hard-voting because it can give more 

weight to highly confident votes). This model uses random forests, kNN, and SVM 

for the final classification. In P029, they present an industrial case where three types 

of anomalies detection are considered: point, context-specific, and collective. 

CNN blocks individually process sensors; then, the resulting feature maps are fed to 

an RNN. A multi-channel CNN architecture is used to process multiple time series. A 

single feature map containing the main features of all the time series is obtained. The 

number of extracted features per window is much higher for the Multi-head convolu-

tion, which performs better than the multi-channel CNN architecture. In paper P030, 

they use multi-modal data fusion for landslide hazard prediction. They combine DEM 

(digital elevation model), HR-RS (high-resolution remote sensing) images, 1:50,000 

GM (geologic maps), and meteorological data. A CNN processes the images, the 

build-up index, and the stream power index. The DEM, HR-RS, GM, and meteorolog-

ical data are fed into a LSTM for classification. The model performs better than SVM, 

decision trees, and backpropagation neural networks.  

 

3.2      Second query results  

In order to answer the RQ2, Fig. 2 shows that complexity is the main challenge re-

ported in manufacturing projects since the data has high-dimensional characteristics. 

Missing or noisy data is also found as a challenge in all kinds of projects. In projects 

with wireless sensor data, low bandwidth can be a problem. The lack of computation 

power and energy consumption are common problems in projects that use sensors in 

mobile devices. Imbalanced classes can be an issue since more errors are found on 

samples from minority classes. Data privacy is a limitation in some driving da-

tasets. The lack of performance metrics is a limitation in unsupervised learning and 

generative adversarial networks. Marine data (P012) has fluctuations, outliers, noise, 

and complex characteristics. The intermittent nature of heart conditions such 

as AFib (P016) is a challenge for data collection. Human movements are encoded in a 

sequence of time, and the activities are not defined by one small window of data 

alone, and multiple sensor devices are required (P028). There is much more data re-

lated to normal behavior in anomaly detection than anomalous data (P029). Sensor-

generated data is expected to be noisy, uncertain, erroneous, and missing due to the 

lack of battery power, communication errors, and malfunctioning devices (P033). 

Healthcare projects report high costs for acquiring medical datasets. 

Regarding the mitigation of the impacts of the detected challenges, the following 

measures are explained:   

Sampling frequency. If all sensors have the same sampling rate, 2D spatio-temporal 

sequence data is formed. Down-sampling reduces the number of dimensions in the 

original time series and makes it easier to learn patterns; in contrast, up-sampling can 

be done by the Lagrange interpolation method.  
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Time-series data augmentation. Some techniques are slicing window, jittering, scal-

ing, time warping, and permutation (in paper P024, it is reported that data augmenta-

tion improved the performance of the CNN model considerably). Some algorithms 

incur a heavier loss for errors on samples from minority classes; putting more focus 

on the minority classes during training is needed. Over-sampling and under-sampling 

techniques are usually used to balance the number of instances of both classes. 

Sliding window. Time series data is processed in a window-based manner. The slid-

ing window length affects the number of parameters of each layer. Allowing overlap 

between segments avoids creating gaps in the output signal. 

Other tools and techniques. Other techniques such as batch normalization are com-

monly used, transfer learning in time series data is proposed, but it needs further re-

search. Likewise, InfluxDB, an open-source distributed database of time series events 

and metrics, is popular for storing real-time IoT data; the Ray v0.7.6 distributed ap-

plication framework is used for hyperparameter search. In paper P037, they evaluate 

the training and architectural parameters on the mentioned framework. 

 

 

Fig.2. Challenges detected in the projects of time-series and sensor data  

   

3.3      Third query results  

In order to answer RQ3, Fig. 3 shows that the use of a single architecture is still the 

most utilized approach for time series forecasting and LSTM networks as the most 

popular choice. LSTM is proven to be the most stable and robust RNN model to learn 

long-range temporal patterns in practical applications. 

Bi-LSTMs were used mainly for recovering missing sequence data. Papers P018, 

P019, and P028 used stacked LSTM, which is built instead of using a higher number 

of memory blocks in a standard recurrent hidden layer. One more recurrent hidden 

layer is stacked, providing better generalization and robust temporal pattern learn-

ing. In P019, the model gets 97%, 95%, and 97% accuracy in anomaly detection per-

forming better than traditional methods like cumulative sum and exponentially 

weighted moving average. In P028, the model gets 92% accuracy in human activity 

recognition having better results than SVM, deep convolutional LSTM, FCNN, and 

single LSTM. They state that batch normalization can obtain similar accuracy with 
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fewer training epochs. Autoencoders explore the underlying structure in the dataset in 

an unsupervised manner; they can be categorized as simple or deep fully connected 

autoencoders, convolutional autoencoders, sequence-to-sequence autoencoders 

(LSTM autoencoders), contractive autoencoders, and variational autoencoders. The 

encoder can be used to read from the time-series data, and a decoder generates the 

missing data sequences. Hybrid approaches are also found in P006, P011, P015, 

P016, P035, and P037. CNN learn the spatial features and LSTMs learn the temporal 

features. The CNN can be treated independently, forming convolutional heads for 

individually feature extracting sensor data, having the advantage of easily adding new 

sensors. The ConvLSTM is described as an extension of LSTM, replacing the matrix 

multiplication in LSTM with a convolutional operation for performing spatio-

temporal forecasting. In the paper, P035, the authors propose an LR-ConvLSTM 

(Long-term Recurrent Convolutional LSTM Network) model for time series classifi-

cation and high-level state prediction. LRConvLSTM is a hybrid deep learning repre-

sentation that has a stacked Convolutional LSTM component to learn complex tem-

poral features and an LSTM component that learns external temporal features. Most 

of the projects use the “many-to-one” approach (the input is divided into fixed-length 

overlapping windows, then a model processes each window individually, generating a 

class prediction for each one, and then the predictions are concatenated). Researchers 

use the “many-to-many” approach in the paper P037. The entire output time series is 

generated with a single model evaluation;they propose a GPU-optimized (cuDNN) 

LSTM implementation for improving the model. In P029, scholars generate an al-

ready-trained model using transfer learning (Transfer Knowledge-Based - TKB) in-

stead of training a model from scratch. Authors use transfer learning to improve their 

model for monitoring Parkinson's disease with wearable devices in paper P039, An 

optimal mechanism for time step searching is needed to improve learning models was 

found in P003. 

 

 
Fig.3. Deep learning architectures and their applications 

4. Discussion 

The current paper was limited by its main focus on deep learning techniques and re-

straint of classical approaches. As future work, we intend to extend this analysis to 

the projects that utilize the ConvLSTM and Temporal Convolutional Net-

work architectures towards verifying their advantages. Additionally, tools for auto-

matic hyper-parameter search need further research.  
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5. Conclusions 

Deep learning has achieved impressive improvement in many research fields. This 

paper presents a systematic literature review about the use of DL in time series data 

produced by IoT sensors. Its insights may be beneficial for optimization in many in-

dustrial processes. The fusion of multi-modal sensor data is a challenging task suita-

ble for deep learning networks since they can find patterns from raw and massive 

data. Findings revealed  that multi-modal approaches increase the accuracy of the 

predicting models. Well-known technologies in natural language processing are also 

being used in time series prediction.  Thus, the attention mechanism and embeddings 

disclosed promising results. The combination of CNN and LSTM networks is a good 

approach for improving time series data prediction. The CNNs are used for the pre-

processing of the sensor data, and the RNNs are used for processing time patterns. 

CNN networks can also obtain spatial patterns. Moreover, Stacked LSTM Autoen-

coders are used for extracting variables from time series in an unsupervised way 

without performing manual data pre-processing.The challenges found in time series 

prediction are missing and noisy data, privacy restrictions of datasets, high costs of 

datasets, especially in the health area, high computational demand, and high wireless 

speed requirements for mobile devices. Applying transfer learning to time series pre-

diction still needs research. Other relevant topics for time series prediction studies are 

Temporal Convolutional Networks and Sequence-to-Sequence learning. 
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APPENDICES 

The list of the analyzed papers is available in the Appendix available in: 

https://www.dropbox.com/s/1hlpy6i1n0vb7rk/appendix.pdf?dl=0 


