
Off-the-Shelf Based System for
Urban Environment Video Analytics

Henry Velesaca1, Steven Araujo1, Patricia L. Suárez1, Ángel Sánchez2 and Angel D. Sappa1,3

1Escuela Superior Politécnica del Litoral, ESPOL, CIDIS, Guayaquil, Ecuador
2Universidad Rey Juan Carlos, 28933 Móstoles, Madrid, Spain

3Computer Vision Center, Edici O, Campus UAB, 08193 - Bellaterra, Barcelona, Spain
{hvelesac, saraujo, plsuarez,}@espol.edu.ec angel.sanchez@urjc.es sappa@ieee.org

Abstract—This paper presents the design and implementation
details of a system build-up by using off-the-shelf algorithms
for urban video analytics. The system allows the connection to
public video surveillance camera networks to obtain the necessary
information to generate statistics from urban scenarios (e.g.,
amount of vehicles, type of cars, direction, numbers of persons,
etc.). The obtained information could be used not only for traffic
management but also to estimate the carbon footprint of urban
scenarios. As a case study, a university campus is selected to
evaluate the performance of the proposed system. The system
is implemented in a modular way so that it is being used as a
testbed to evaluate different algorithms. Implementation results
are provided showing the validity and utility of the proposed
approach.

Keywords—greenhouse gases, carbon footprint, object detection,
object tracking, website framework, off-the-shelf video analytics.

I. INTRODUCTION

A smart city is a place where traditional services become
more flexible, efficient and sustainable with the use of in-
formation and communication technologies for the benefit of
its inhabitants ([1], [2]). Currently, there are several initiatives
for the development of technologies in the context of smart
cities; and among the most challenging approaches are those
focused to reduce the impact of pollution due to the emission
of greenhouse gases. For example, in Europe, the set plan
supports cities to take measures to arrive in next years to reduce
40 percent of greenhouse gas emissions through sustainable
use and energy production [3]. Urban carbon emissions can
be generated due to several factors, from moving vehicles till
outdoor lighting systems—e.g., street lights, lights for building
facade valorization, etc. [4]. In short, there is a massive effort on
measuring and controlling carbon emissions within the context
of smart cities, as mentioned above, some times referred in the
literature to as carbon footprint.

In order to reduce the emissions, the sources need to be
identified and the amount of environmental pollution needs
to be measured. As mentioned above one of the sources of
carbon emissions are vehicles. In recent years some effort
has been put on counting the number of vehicles in urban
areas and classifying them according to their size. Studies
on specific places on urban scenarios were performed and
statistics information were collected. Such a kind of procedure
consists of installing physical devices (e.g., piezoelectric loops)
to collect information for a couple of days.

Nowadays, most of the cities have hundreds of thousands of
video cameras, which are mainly used for urban monitoring
and video surveillance. Generally, these cameras are being
supervised by a person, which is susceptible to errors due to the
large amount of information that the person has to handle. In
this way, it is very important to invest efforts in computer vision
systems to assist the people who are in charge of taking control
and thus reducing the margin of error to the minimum [5]. Such
a video systems can be used not only for video surveillance
applications but also for generating statistics about different
urban indicators, such as number of vehicles through an avenue,
number of people in a certain place among others as mentioned
in [6]. This information is useful for governments that are
interested in the reduction of greenhouse gases. The current
work aims to provide a technological solution to measure the
impact by generating statistics related with vehicle’s usage in
urban environments. The system is based on the usage of a
deep learning approach that allows nowadays to obtain reliable
solution to most of computer vision-based problems.

Deep Learning has taken importance in the video analytics
and allows to solve most of the tasks that a human operator
would execute, in addition of doing it in a more efficient
way. For example, Fernández [7] indicates that at present the
principal interest is on applications such as fight detection,
identification of vandalism, theft detection, among others. The
author also mentions that the increase in video surveillance
cameras and mass production of videos all around the world
has increased in recent years, so it is necessary to use models
based on Deep Learning for the tasks of classifying each one of
the activities to be identified, in the same way, that no person
can be done.

Another important concept is the off-the-shelf technologies,
which are solutions made, tested and well maintained by third
parties that are available either free or paid [8]. In the current
work, the usage of the large amount of non-payment code
available will be exploited. In particular both, code for the
detection of objects and for tracking them within a scene,
with the aim of developing and implementing a system that
integrates these two elements and allows to authorities of the
public sector to be able to estimate the carbon footprint.

The manuscript is organized as follows. Section II presents
works related with both the computer vision approaches needed



for the video processing and understanding and the software
development frameworks. The solution proposed in the current
work is detailed in section III. Implementation results are
depicted in section IV to illustrate a case study. Finally, the
conclusions are given in section V.

II. STATE OF THE ART

This section reviews recent approaches related with the pro-
posed system. It covers topics from the pattern recognition and
tracking till software development frameworks and databases
engines.

A. Object detection

During the last five years, a large amount of convolutional
neural network-based approaches have been proposed for object
detection. This section just reviews some of them, related to the
system implemented in the current work.

1) SSD: One of the existing methods for detecting objects
in images using a single deep neural network is presented
in [9]; it is named as Single Shot multi-box Detector (SSD),
which discretizes the output space of bounding boxes into a
set of default boxes over different aspect ratios and scales
per feature map location [9]. This network, at prediction time,
estimates scores for the presence of each object category in
each default box and generates adjustments to each box to
improve the matching of the object shape. The network also
combines predictions from multiple feature maps with different
resolutions to naturally handle objects of various sizes [9].

2) Faster R-CNN: Another object detection method based
on region proposal to determine object locations is introduced
in [10]; in this work, the authors propose an algorithm that
performs a Region Proposal Network (RPN) that shares full-
image convolutional features with the detection network. This
network uses as input an image of any size and returns a
prediction of object bounds and scores at each position. The
RPN network is initialized with ImageNet and fine-tuned for
region proposal. The obtained regions are used to train Fast R-
CNN; it shares convolutional layers weights, forming a unified
network based on image regions to reduce the time of execution
of object detection [10].

3) YOLO: The last network architecture reviewed in this
section is YOLO (You Only Look Once) [11]. This architecture
is intended for object detection tasks, specialized to determine
the location on the image where target objects are present, as
well as to predict the type of object. YOLO tackles object
detection as a single regression problem, using a convolutional
neural network. It receives as input an image and returns
a vector of bounding boxes coordinates together with their
corresponding class probabilities. YOLO also exploits multi-
scale training which increases the robustness of the solution.
The last version of YOLO, named YOLOv3, uses multi-label
classification to calculate the likeliness of the input belonging
to a specific label, also uses binary cross-entropy loss for
each label, reducing the computation complexity. This type
of algorithm is commonly used for real-time one-shot object
detection [11].

B. Object tracking

Once an object is detected in a given frame, it needs to
be tracked through the whole video sequence in order to
get the same label and counted just one time through the
video sequence. Hence, this section reviews state-of-the-art
techniques for object tracking.

1) Template matching OpenCV function: Template matching
is a technique that apply an exhaustive search for coincidences
between regions of different images. It works by comparing
a region from the template image with regions in the source
image, image in which it is expected to match the template. It
is recommended that the template image be smaller than the
source image. In OpenCV there are six different methods to
compute the matching cost; although all of them have a similar
performance, CCOEFF NORMED works better when there are
differences between illuminations of both images [12].

2) Simple online and realtime tracking: Simple Online and
Realtime Tracking (SORT) is a software tool that allows to
track objects in real-time. It uses a Kalman filter and the
Hungarian algorithm to predict the track of previously identified
objects and matches them with new detections [13]. It is a
simple and an effective algorithm.

3) Extension to simple online and realtime tracking: In [14]
an extension of the SORT algorithm, named DEEP SORT,
is proposed. It improves the performance of detection using
appearance information. This method makes possible to track
objects through longer periods of occlusions, effectively re-
ducing the number of identity switches. The computational
complexity is placed into an offline pre-training stage using a
deep association metric on a largescale person re-identification
dataset. With the deep network, a vector that can describe
all the features of a given image is obtained, improving
the uncertainties coming from the Kalman filter related to
the location of objects over time. During online application,
the method establish measurement-to-track associations using
nearest neighbor queries in visual appearance space, achieving
competitive performance at high frame rates.

C. Website development frameworks

Currently there is a large number of website development
frameworks and depending on the context where it can be used
will have advantages over another.

1) Java server faces: The Java Server Faces (JSF) is a
web development framework oriented to the user interface for
web applications based on the JAVA programming language;
it uses Java Server Page (JSP) as a technology that allows the
deployment of pages, but also uses other technologies such
as AJAX, XML, JavaScript, CSS, HTML, RichFaces, among
others [15].

2) Symfony: Another very popular framework for web de-
velopment is Symfony; its popularity is because it is one of
the frameworks for the PHP programming language with better
performance, one of its characteristics is that it presents an
internal architecture based on modules, which allows replacing
or eliminating components that are not needed within a project,



also has a community that supports new features and existing
ones [16].

3) Django: Before presenting the following framework we
will talk about the language in which it is based; Python is
a programming language interpreter that allows a fast perfor-
mance for different type of programs. It is an object-oriented
programming language of general-purpose in general popularity
in the area of deep learning, machine learning an others areas.
Django is a web framework based in python that allows
easy development, clean and pragmatic design [17]. Django
uses the Model Template View (MTV) paradigm, which is
essentially the Model View Controller (MVC) paradigm but
with different names on its components. Table I shows the
equivalence between MVC and MTV architecture [17].

TABLE I: Equivalence MVC to MTV

Typical MVC Django MTV (file)
Model Model (models.py)
View Template (template.html)

Controller View (views.py)

D. Databases engines
After reviewing the different web development frameworks

we will now review two database engines based on two different
types of paradigms.

1) MySQL: MySQL is an RDBMS (Relational DataBase
Management System) that allows running databases on different
operating systems, stable, good performance, has a community
support maintenance and also a large amount of documentation
is available. It is an engine that allows managing both desktop
and web applications [18].

2) MongoDB: MongoDB is a document-oriented database
that is based in collections instead of tables as in RDBMS.
Documents are a structure similar to rows as in RDBMS and
are organized in collections, that not have any restrictions by
creation. The content of documents can be any elemental data
type, such as string, date, number or other document [19].

III. PROPOSED SOLUTION
This section presents details of the implemented system for
urban video analytics.

A. Software architecture
The proposed solution has been implemented following a

web-oriented approach, which allows scalability, robustness and
a continuous growth. Django has been chosen as development
framework due to the support, a large developer community, in
addition to the fact of using Python as a programming language,
which is currently widely used by the scientific community.
On the other hand, the database has been implemented in
MongoDB which is a documented oriented, Not Only SQL
”NOSQL”, that allows multiple structural information that
permit flexibility and scalability feature and also massive real-
time data flow, this database engine is efficient in memory
processing and complex data type feature as indicated in [19].
Figure 1 shows a general scheme of the software architecture
used by the proposed solution.

Back-end algorithms

Mongo DB Django

Views
Front-end

Models

Yolo V3
Object Detection

Sort
Object Tracking

Fig. 1: General scheme of software architecture.

B. Front-end design

The front-end has been designed offering to the users all
the possible system configuration. This section details all the
components included in the fron-end.

1) Software configuration: The first module of the web
application allows the construction of the functional archi-
tecture dynamically; that is, it allows the user to create and
configure the functional parameters such as: options menu,
profiles, controls, actions to be performed by users, projects and
users. To implement this application design, one of the most
powerful components of the Django web framework has been
used, which has an interface that, by default, allows managing
previously created and registered models, but also leaves the
possibility of being able to perform new customization in the
future. Figure ref fig2 shows a view of the models that are
part of the functional architecture of the system.

Fig. 2: View of models that allows parameterization of the
system.

2) Security administration and profiles: The next module to
analyze is the default security mechanisms offered by Django;
although it is a robust and safe scheme for our proposed



solution, modifications were made by adding additional func-
tionalities such as displaying the options menu based on the
profile assigned to a given users, visualization of actions within
the views shown to the user and projects permissions assigned
to a given users. Figure 3 depicts a snapshot of a part of the
administrator profile view.

Fig. 3: View of an administrator profile.

3) Parameters setting of back-end algorithms: Another char-
acteristic of the proposed solution is the possibility to set all
the parameters needed by detection and tracking algorithms
(implemented in the back-end); it avoids having to change
this configuration through the code. For example it is possible
to choose the types of objects to be detected and also the
corresponding detection threshold for each object.

4) Cameras configuration: In order to give the required
portability and flexibility, the system offers the possibility to
connect video cameras for processing. The configuration allows
to define cameras, set camera’s values and select the one/s that
will be used by the detection and tracking algorithms. The
interface allows to mark in a map the camera position for a
further reference.

5) Execution of detection and tracking processes: After
performing the configuration of the IP cameras, it is possible
to execute the detection and tracking algorithms. This option
allows you to select the previously configured cameras and first
execute the object detection algorithm in background mode and
then execute the algorithm that tracks the object of interest.
The information obtained from these processes is stored in the
MongoDB database so that users can analyze the information
and obtain the corresponding statistics based on the information
processed and stored in the system.

6) Statistics: Finally, the module of statistics obtained from
the data generated by the detection and tracking algorithms
is described. This module allows to generate video analytics
reports according to the user requirements (e.g., day, period
of time, type of vehicle, frecuency, etc.), this is done using
drill-down reports that allows users to navigate among different
layers of data granularity by navigating and clicking a specific
data element on the report.

C. Backend algorithms

This section presents the backend algorithms that were
selected for the proposed solution.

1) Object detection: Objects have been detected using the
third version of YOLO; it has been selected due to the evidence
presented in the state of the art and the multiple advantages it
has in relation to other detectors. The main feature that makes
it ideal for the proposed solution is that it is commonly used
for real-time object detection and it is much faster than other
detectors; this feature is important for the proposed solution
since it should run in real-time in a web-based platform. The
most salient feature of YOLOv3 is that it makes detections at
three different scales. The detection is done by applying 1×1
detection kernels on feature maps of three different sizes at
three different places in the network.

2) Object tracking: A set of experiments have been carried
out for selecting the best tracking method. In the experiments
the three methods explained in the state of the art section have
been analyzed. As a result, the Simple Online and Realtime
Tracking (SORT) has been selected since it obtains better per-
formance compared to the other options. It was concluded that
the match template method has delays in runtime because bit-
level comparisons are made with each of the recognized objects
(bounding boxes), being the worst case when the execution time
is O(n.m), where n and m are the numbers of objects detected in
two different frames; with respect to the extension of the SORT
(DEEP SORT), it presents a delay since it has an added value
with the appearance vector, presenting the same problem of the
previous method with only the characteristic vector that has
an execution time of O(n.m), thus decreasing the performance
compared to the original SORT method. Table II shows metrics
from execution times for the three evaluated algorithms.

TABLE II: Metrics from execution times of tracking algorithms

Elapsed time (seconds)
- SORT Deep SORT OpenCV

avg 0,15 2,99 3,01
max 1,53 8,26 9,04
min 0,12 2,72 2,97
std 0,13 0,44 0,52

IV. IMPLEMENTATION RESULTS

This section presents snapshots of the most representative
views of the platform implemented for the urban video an-
alytic application. The illustrations presented in this section
correspond to results obtained from cameras of a university
campus connected to the system; a server with a Titan X GPU
was used to process and visualize the results at a real time.

A. Camera configuration view

The camera configuration interface presented above was used
to set the IP camera addresses, and others parameters. In Fig. 4
a snapshot of the camera configuration interface is shown; the
camera parameters as well as the camera position (i.e., latitude
and longitude) are defined. In the bottom part a live view of
the camera is shown to check the added information is correct.



Fig. 4: View of a camera configuration.

B. Execution of detection and tracking process view

Once all cameras have been configured in the system, the
videos acquired by them are processed according to the user’s
specifications. This section shows some results of the detection
and tracking algorithms, which are subsequently stored in the
database for further processing and analysis. As a case study,
one of the IP cameras is used to show system performance.
The selected chamber is located geographically at the entrance
of the university campus. It should be noted that the algorithms
run in the background, which allows a user to use all the
functionalities of the system simultaneously. Figure 5 shows
the results of the detection and monitoring process.

Fig. 5: View of an execution of detection and tracking pro-
cesses.

C. Statistic view

The system allows to obtain statistics related to previously
processed and stored video sequences. For example, the user
can obtain information regarding: the number of vehicles and
/ or pedestrians detected by a particular camera in a certain

period of time; the class of vehicles detected (for example,
buses, trucks, cars, motorcycles); day and period of time
with the highest frequency of vehicles and / or pedestrians;
frequency of buses detected from a certain camera (in the case
of study this information corresponding to the buses entering
the university campus); among other possible queries that the
user can make. Figures 6 and 7 show examples of the reports
generated by the system; This interactive interface allows the
user to visualize in greater detail the information of interest
to analyze by selecting one of the existing categories in the
system.

Fig. 6: View of a generated report.

Fig. 7: View of a generated report.

V. CONCLUSIONS

The manuscript presents a computer vision system based
on off-the-shelf algorithms for urban video analytics. The
main objective is to develop a system able to be used in a
smart city context to process information from already existing
video surveillance networks. The proposed approach has been
implemented using available open source and evaluated in a
real scenario showing its validity. As a future work other deep
learning based algorithms will be evaluated in the proposed



framework, trying to reduce processing time as well as to
improve accuracy on results.

ACKNOWLEDGMENT

This work has been partially supported by: the ES-
POL project “Aplicaciones TICs para Ciudades Inteligentes”
(REF: FIEC-16-2018); the Spanish Government under Project
TIN2017-89723-P; the “CERCA Programme / Generalitat de
Catalunya”. The authors gratefully acknowledge the support of
the CYTED Network: “Ibero-American Thematic Network on
ICT Applications for Smart Cities” (REF-518RT0559) and the
NVIDIA Corporation with the donation of the Titan Xp GPU
used for this research.

REFERENCES

[1] S. P. Mohanty, U. Choppali, and E. Kougianos, “Everything you wanted
to know about smart cities: The internet of things is the backbone,” IEEE
Consumer Electronics Magazine, vol. 5, no. 3, pp. 60–70, 2016.

[2] R. R. Harmon, E. G. Castro-Leon, and S. Bhide, “Smart cities and
the internet of things,” in 2015 Portland International Conference on
Management of Engineering and Technology (PICMET). IEEE, 2015,
pp. 485–494.

[3] A. Kylili and P. A. Fokaides, “European smart cities: The role of zero
energy buildings,” Sustainable cities and society, vol. 15, pp. 86–95, 2015.

[4] F. Rossi, E. Bonamente, A. Nicolini, E. Anderini, and F. Cotana, “A
carbon footprint and energy consumption assessment methodology for
uhi-affected lighting systems in built areas,” Energy and Buildings, vol.
114, pp. 96–103, 2016.

[5] F. J. López Rubio et al., “Detección de objetos en entornos dinámicos
para videovigilancia,” 2016.

[6] H. Zhang, V. Sindagi, and V. M. Patel, “Joint transmission map estimation
and dehazing using deep networks,” arXiv preprint arXiv:1708.00581,
2017.

[7] L. C. Fernández Martı́nez, “Identificación automática de acciones hu-
manas en secuencias de video para soporte de videovigilancia,” 2018.

[8] E. Ventocilla and M. Riveiro, “Visual analytics solutions as ‘off-the-
shelf’libraries,” in 2017 21st International Conference Information Vi-
sualisation (IV). IEEE, 2017, pp. 281–287.

[9] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.
Berg, “Ssd: Single shot multibox detector,” in European conference on
computer vision. Springer, 2016, pp. 21–37.

[10] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” in Advances in neural
information processing systems, 2015, pp. 91–99.

[11] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 779–
788.

[12] M. Marengoni and D. Stringhini, “High level computer vision using
opencv,” in 2011 24th SIBGRAPI Conference on Graphics, Patterns, and
Images Tutorials. IEEE, 2011, pp. 11–24.

[13] A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft, “Simple online
and realtime tracking,” in 2016 IEEE International Conference on Image
Processing (ICIP). IEEE, 2016, pp. 3464–3468.

[14] N. Wojke, A. Bewley, and D. Paulus, “Simple online and realtime tracking
with a deep association metric,” in 2017 IEEE International Conference
on Image Processing (ICIP). IEEE, 2017, pp. 3645–3649.

[15] D. Palacios, J. Guamán, and S. Contento, “Análisis del rendimiento de
librerı́as de componentes java server faces en el desarrollo de aplicaciones
web,” NOVASINERGIA, vol. 1, no. 2, pp. 54–59, 2018.

[16] M. C. Valle Dávila, “Estudio del framework symfony 2 para el desarrollo
de aplicaciones empresariales,” B.S. thesis, 2017.

[17] J. Vainikka, “Full-stack web development using django rest framework
and react,” 2018.

[18] A. MySQL, “Mysql,” 2001.
[19] N. Q. Mehmood, R. Culmone, and L. Mostarda, “Modeling temporal

aspects of sensor data for mongodb nosql database,” Journal of Big Data,
vol. 4, no. 1, p. 8, 2017.


