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Abstract

This systematic literature review examines the integration of Machine Learning techniques
within industrial system architectures using OPC-UA for process automation. Through
analyzing primary studies published between 2018 and 2024, the review identifies key
trends, methodologies, and implementations across various industrial applications. The
review identifies a marked increase in research focused on hybrid architectures that in-
tegrate Machine Learning with OPC-UA, particularly in applications such as predictive
maintenance and quality control. However, despite reported high accuracy rates—often
above 95%—in controlled environments, there is limited evidence on the robustness of
these solutions in real-world, large-scale deployments. This highlights the need for further
empirical validation and benchmarking in diverse industrial contexts. Implementation
patterns range from cloud-based deployments to edge computing solutions, with OPC-UA
serving as a communication protocol, information modeling framework, and specifically
using the finite state machine specification. The review also highlights current challenges
and opportunities, providing valuable insights for researchers and practitioners working
on intelligent industrial automation.

Keywords: OPC-UA; Industry 4.0; control systems; machine learning; deep learning

1. Introduction
The evolution of Industry 4.0 encompasses multiple technological pillars, including

cyber-physical systems, IoT, cloud computing, big data analytics, and advanced human–
machine interfaces. Among these, Open Platform Communications-Unified Architecture
(OPC-UA) and artificial intelligence have emerged as critical enablers for standardized
communication and intelligent decision making in industrial automation. OPC-UA stan-
dardizes secure, vendor-neutral communication between heterogeneous systems (from
legacy devices to IoT machinery), while Machine Learning (ML) techniques empower capa-
bilities such as predictive analytics, adaptive control, and autonomous decision making in
areas such as predictive maintenance and resource optimization. However, this integration
faces challenges, such as fragmented standards, cybersecurity risks, and the rigidity of
traditional industrial architectures [1]. The convergence of these technologies seeks to
overcome these barriers, promoting intelligent, reconfigurable, and data-driven indus-
trial ecosystems capable of driving operational efficiency and continuous improvement in
automated environments [2–4].
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The proliferation of ML methods—spanning supervised, unsupervised, and reinforce-
ment learning—has expanded their applicability across industrial domains. However, their
integration into existing architectures remains challenging due to incompatible standards
and rigid system designs, which often hinder the embedding of adaptive intelligence
directly into physical workflows [5,6]. This gap has spurred the emergence of intelligent in-
dustrial process automation, an approach that synergizes ML’s autonomy and adaptability
with industrial architectures to create reconfigurable, collaborative ecosystems [7].

Recent studies underscore this trend. For instance, Schindler et al. [8] explore the
fusion of reinforcement learning (RL) with OPC-UA, identifying its potential in direct
industrial applications and data inference while highlighting challenges like simulation-
to-reality transitions and interface standardization. Xia et al. [9] analyze heterogeneous
industrial networks, emphasizing OPC-UA’s role in harmonizing devices like PLCs and
sensors alongside edge-cloud computing and blockchain. Balador et al. [10] further validate
OPC-UA’s interoperability strengths in distributed systems, advocating its integration with
real-time protocols like DDS for scalable IIoT solutions. Collectively, these works highlight
the critical need for standardized, secure, and adaptive frameworks to realize Industry 4.0’s
potential fully.

This systematic literature review examines the dual convergence of OPC-UA and ML
in industrial automation, assessing methodologies, frameworks, and applications that lever-
age OPC-UA’s data exchange capabilities to embed ML-driven intelligence. By evaluating
strengths, weaknesses, and implementation challenges, the study identifies key success
factors and unresolved barriers—such as real-time adaptability and cybersecurity—while
proposing future directions for intelligent automation.

This article is organized into four sections. Section 3 describes the process applied
and the results obtained at each stage of the systematic review. In Section 5, the results
obtained from the literature review are presented. Section 5.6 describes the main strengths,
opportunities, weaknesses, and threats associated with the intelligent automation process,
as well as the main challenges and future lines of research that arise as a result. This analysis
is carried out in terms of the models proposed to create networks of intelligent industrial
systems. Section 6 presents future directions of the current work. Finally, in Section 7, the
conclusions of the study are described in detail.

2. OPC-UA
OPC-UA [11] is an open, cross-platform industry standard designed for secure, reliable,

and scalable communication between devices, systems, and applications in automation and
IoT environments. Although often used interchangeably in literature, OPC-UA is more than
just a communication protocol because it constitutes a comprehensive industrial standard
that defines both a complete communication framework and an information model. While
traditional protocols primarily focus on data transmission mechanisms, OPC-UA as a
standard encompasses security models, information modeling, service definitions, and
interoperability specifications. This distinction is crucial for understanding OPC-UA’s
role in industrial automation because it provides not only the means to communicate but
also the semantic structure to represent complex industrial information consistently across
heterogeneous systems.

Unlike its predecessor, OPC Classic, it eliminates technology dependencies such as
COM/DCOM, and is based on a service-oriented architecture (SOA), compatible with
modern protocols (TCP, HTTP, MQTT), and adaptable from simple sensors to complex
infrastructures. Its core integrates a unified information model, which organizes data
hierarchically through nodes (objects, variables, methods) and relationships, along with a
robust security framework (encryption, authentication, and access control). OPC-UA is key
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to Industry 4.0, facilitating interoperability between manufacturers, IT/OT integration, and
advanced applications such as digital twins, predictive analytics, cyber-physical systems,
and others. Its flexibility and standardization position it as the essential protocol for
industrial digital transformation. Below are the most relevant parts of the standard that are
essential for integration with artificial intelligence techniques.

OPC 10000-1: UA Part 1: Overview and Concepts [12]: This section of OPC 10000
introduces the fundamental concepts and provides a comprehensive overview of the
OPC-UA. Familiarity with this document facilitates understanding of subsequent parts
in the OPC 10000 series. The document briefly outlines each component of the series and
recommends an optimal sequence for reviewing the documentation.

OPC 10000-2: UA Part 2: Security [13]: This section delineates the OPC-UA security
model, addressing potential threats across physical, hardware, and software environments
where OPC-UA operates. It articulates how OPC-UA leverages existing security standards,
defines key terminology used throughout the specification series, and outlines general
security features. The document connects these features to security concepts detailed
in other OPC-UA specifications, references normative services, mappings, and profiles
from companion documents, and offers implementation best practices. Any perceived
inconsistencies between this document and other normative specifications do not diminish
requirements established in those normative documents.

OPC 10000-3: UA Part 3: Address Space Model [14]: Describes how information
is structured through nodes (objects, variables, methods) and hierarchical relationships,
allowing complex data and contextual semantics to be represented in a standardized format
that facilitates interoperability.

OPC 10000-4: UA Part 4: Services [15]: Specifies basic communication services, such
as reading/writing variables, method execution, real-time subscription management, and
event handling. These services are the basis for interaction between clients and servers.

OPC 10000-5: UA Part 5: Information Model [16]: The specified section of OPC Unified
Architecture establishes the Information Model framework, which delineates standardized
nodes within a server’s AddressSpace. These nodes comprise both standardized types
and instances that serve diagnostic functions or act as entry points to server-specific nodes.
Consequently, the Information Model defines the AddressSpace architecture for a baseline
OPC-UA server, though it should be noted that comprehensive implementation of all
defined nodes is not an expectation for all server deployments.

OPC 10000-6: UA Part 6: Mappings [17]: Details how OPC-UA is implemented
over transport protocols such as TCP, HTTP, or MQTT, ensuring compatibility with tra-
ditional and modern industrial networks, including integration with web-based and
cloud-based systems.

OPC 10000-16: UA Part 16: State Machines [18]: Models the dynamic behavior of
systems using state machines (states, transitions, and events), enabling the management of
complex lifecycles in industrial processes, such as manufacturing sequences or diagnostics.

3. Systematic Review
Before detailing the proposed systematic review methodology, a review of the state-

of-the-art surveys is conducted. Schindler et al. [8] conducted a mini-review showing
that reinforcement learning applications with OPC-UA highlight the protocol’s potential
for enabling adaptive control systems that can learn and optimize industrial processes in
real-time. This work reveals that OPC-UA’s publish-subscribe mechanisms and historical
data access capabilities provide the necessary infrastructure for reinforcement learning
agents to observe system states, execute actions, and receive feedback from industrial
processes. This work focuses specifically on the reinforcement learning area. Furthermore,
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the systematic literature review proposed by Velesaca et al. [19] shows that the integration
of data mining and natural language processing with OPC-UA demonstrates how the
protocol’s semantic information models can be leveraged to extract meaningful insights
from industrial data streams. This enables more sophisticated Machine Learning appli-
cations such as anomaly detection, pattern recognition, and automated decision-making.
Similar to the previous work, it only focuses on specific techniques for data mining and
NLP. Finally, Balador et al. [10] present a literature review showing that OPC-UA serves as
a communication middleware. This allows for the seamless data exchange between diverse
industrial systems and provides the standardized interface necessary for Machine Learning
algorithms to access real-time operational data. The previously reviewed works show
how OPC-UA can be integrated with Machine Learning models, which will be carried
out. However, these works do not show implementation details, specific architectures, or a
complete detail of all existing technique categories.

Unlike surveys focused solely on ML in manufacturing, this review centers on the
convergence with OPC-UA. We analyze not only techniques and applications but also the
specific roles of OPC-UA (communication protocol, information model, state machines,
companion specifications), deployment topologies (edge/fog/cloud), and system-level
constraints (latency, reliability, security). This perspective yields integration patterns and
actionable guidance for architecting ML systems grounded in industrial standards.

A systematic review of the literature involves identifying, evaluating, and interpreting
the most relevant studies on a specific topic, research question (RQ), or phenomenon. There-
fore, the general objective of such a process is to provide evidence that answers a set of RQs
derived from primary studies in which the subject of study has been previously addressed.
To carry out the systematic review process, this article followed the methodological guide-
lines proposed by [20] for developing literature reviews in the field of Software Engineering.
However, since the detailed process is quite general, its application in this study has been
deemed feasible after contrasting it with another methodological tool oriented toward the
development of studies of the same nature in the area of Computer Sciences proposed
by [21]. The application of this process is detailed in the sections below.

3.1. Definition of RQs

Given the recent interest of the scientific community in applying Machine Learning
techniques to industrial system architectures for process automation, this systematic review
answers six research questions. These questions, which other similar studies have not
addressed, served as the primary guide for the review process and are detailed as follows:

1. RQ1: What integration patterns and system architectures leveraging OPC-UA enable
the adoption of Machine Learning in industrial automation?

2. RQ2: How are Machine Learning techniques implemented and deployed across
different layers of an industrial system, and what role does OPC-UA play at each level?

3. RQ3: What are the most common Machine Learning algorithms used in OPC-UA-
based industrial systems, and what are the specific criteria that influence their selection
and suitability for different applications?

4. RQ4: What methodologies and implementation strategies are applied to deploy
Machine Learning techniques with OPC-UA?

5. RQ5: What measurable outcomes are reported, and how are these improvements
evaluated to enable comparison of effectiveness across different studies?

6. RQ6: What are the strengths, weaknesses, opportunities, and threats (SWOT) of
the Machine Learning + OPC-UA paradigm, and what benchmark and validation
frameworks are needed?
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3.2. Selection of Information Sources

The previously defined research questions guided the selection of key terms for the
search process. These primary terms include (machine learning, machine learning technique),
(industrial system, industrial system architecture, industrial process), (intelligent, artificial intelli-
gence), and (automation, automation process). Using these terms, three search strings (SS) are
strategically formulated to follow the structure described below:

1. SS1: (“opc-ua” OR “OPC-UA”) AND “machine learning” AND (“manufacturing” OR
“embedded” OR (“industrial” AND “automation”));

2. SS2: (“opc-ua” OR “OPC-UA”) AND “machine learning” AND (“control” OR “controller”)
AND “based” AND (“industrial” OR “industry”);

3. SS3: (“opc-ua” OR “OPC-UA”) AND “deep learning”;

Once the SS have been defined, the next step is to identify the information sources for
executing the search equations. This is done to retrieve the most relevant studies addressing
the integration of Machine Learning and OPC-UA, published in high-impact scientific
journals. Following the methodological frameworks proposed by [20,21] for conducting
literature reviews, a total of five primary information sources (PIS) are considered.

ACM Digital Library (PIS1) stands out for being the most complete and specialized
digital library in the field of computer science, with a fundamental historical collection
for computer science research; the IEEE Digital Library (PIS2) stands out for its specific
focus on electrical engineering, electronics and computer science; the ISI Web of Science
(PIS3) is distinguished by its rigorous system of academic citation indexes and impact
analysis of scientific publications; Scopus (PIS4) stands out for being Elsevier’s largest
bibliographic database of abstracts and citations, covering multiple academic fields; and
finally, Springer (PIS5) is characterized by its extensive collection of scientific, technical
and medical publications, with a strong emphasis on books and academic journals.

1. PIS1: Association for Computing Machinery (ACM) Digital Library, accessed on 7
February 2025, available at: https://dl.acm.org/

2. PIS2: Institute of Electrical and Electronics Engineers (IEEE) Digital Library, accessed
on 7 February 2025, available at: http://ieeexplore.ieee.org/

3. PIS3: Institute for Scientific Information (ISI) Web of Science Database, accessed on 7
February 2025, available at: https://webofknowledge.com/

4. PIS4: Scopus of Elsevier Database, accessed on 7 February 2025, available at: https:
//www.scopus.com/

5. PIS5: Springer Database, accessed on 7 February 2025, available at: https://link.
springer.com/

4. Selection of Studies
The search process conducted in December 2024 involved utilizing each of the specified

search engines to query the titles of relevant publications. This approach allowed us to
eliminate numerous studies related to Machine Learning and industrial processes that did
not specifically focus on Machine Learning techniques within industrial systems. Many
of these discarded studies are centered only on digital twins, which are not pertinent to
our investigation. Our primary focus is on studies where Machine Learning techniques are
employed within industrial system architectures for process automation using OPC-UA.

The exploration and discovery process produced a total of 750 studies. After the
removal of duplicates and congress books, 69 unique studies remained. Following a review
of the article summaries, 17 proposals are determined to be irrelevant to the study area,
resulting in 52 studies for comprehensive analysis. Therefore, the analysis of the results in

https://dl.acm.org/
http://ieeexplore.ieee.org/
https://webofknowledge.com/
https://www.scopus.com/
https://www.scopus.com/
https://link.springer.com/
https://link.springer.com/
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this systematic review considers 52 proposals as primary sources. The details of the process
are illustrated in Figure 1, and the results of the selection process are presented in Table 1.

ACM

IEEE

Web Of Science

Scopus

Springer

Selection
Study

480

148

43

10

69

Merge

Duplicate
Removal

Remove 
Congress

Books

750
Results of 
Individual
Studies

127 69 52

Full Read

Synthesis and 
Discussion

RQ3 RQ4RQ2 RQ5RQ1 RQ6

SS1: (”opc-ua” OR ”opc ua”) AND ”machine learning” AND (”manufacturing”
OR ”embedded” OR (”industrial” AND ”automation”));

SS2: (”opc-ua” OR ”opc ua”) AND ”machine learning” AND (”control” OR
”controller”) AND ”based” AND (”industrial” OR ”industry”);

SS3: (”opc-ua” OR ”opc ua”) AND ”deep learning”;
In Title and Abstract

Figure 1. Method applied for the systematic literature review.

Table 1. Main primary information sources reviewed.

No. PIS Reference SS Year T. Study

E1 Scopus Bindra and Aggarwal [22] SS3 2024 Conference
E2 IEEE Filimonov et al. [23] SS3 2024 Conference
E3 Scopus Friedrich et al. [24] SS1 2024 Journal
E4 Springer Poka et al. [25] SS1, SS2 2024 Journal
E5 Scopus Rehmer et al. [26] SS1 2024 Chapter book
E6 IEEE Revankar et al. [27] SS1, SS3 2024 Conference
E7 Scopus Velesaca et al. [28] SS3 2024 Conference
E8 Scopus Wang et al. [29] SS3 2024 Journal

E9 Scopus, IEEE Diprasetya et al. [30] SS1, SS2 2023 Conference
E10 Scopus Gönnheimer et al. [31] SS1, SS2 2023 Journal
E11 Springer Haghshenas et al. [32] SS1, SS2 2023 Journal
E12 IEEE Hirsch et al. [33] SS1, SS2 2023 Conference
E13 Springer Lockner et al. [34] SS1, SS2 2023 Journal
E14 Scopus Minh et al. [35] SS2 2023 Journal
E15 Scopus Nam et al. [36] SS3 2023 Conference
E16 ACM Pospisil and Fujdiak [37] SS1, SS2 2023 Conference
E17 ACM Rosa et al. [38] SS1, SS2 2023 Conference
E18 Scopus Schneider et al. [39] SS1 2023 Conference
E19 IEEE, Scopus Sharma et al. [40] SS1, SS2 2023 Journal
E20 WOS Tiwari et al. [41] SS1, SS2 2023 Journal
E21 Scopus, IEEE Tufek [42] SS1 2023 Conference
E22 Scopus, IEEE Tufek et al. [43] SS1, SS3 2023 Conference
E23 Scopus Webb et al. [44] SS1 2023 Conference

E24 IEEE Gong et al. [45] SS3 2022 Conference
E25 Scopus Kedari et al. [46] SS1 2022 Conference
E26 Springer Park et al. [47] SS1, SS2 2022 Journal
E27 Springer Pinto et al. [48] SS1, SS2 2022 Journal
E28 IEEE Rahadian et al. [49] SS1 2022 Conference
E29 Scopus Schäfer et al. [50] SS1, SS2 2022 Conference
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Table 1. Cont.

No. PIS Reference SS Year T. Study

E30 Scopus, IEEE Bonomi et al. [51] SS1 2021 Conference
E31 Scopus Kaymakci et al. [52] SS1 2021 Conference
E32 IEEE Nohl et al. [53] SS1 2021 Conference
E33 WOS, Scopus Pop et al. [54] SS2 2021 Journal
E34 IEEE, Scopus Rath et al. [55] SS1, SS2 2021 Conference
E35 IEEE Soller et al. [56] SS1 2021 Conference
E36 Scopus, WOS Wang et al. [57] SS3 2021 Journal

E37 IEEE Bakakeu et al. [58] SS1 2020 Conference
E38 IEEE Céspedes and Barrera [59] SS1 2020 Conference
E39 Scopus, IEEE Fernandez et al. [60] SS3 2020 Conference
E40 Scopus Gichane et al. [61] SS2 2020 Journal
E41 Scopus, ACM Hildebrandt et al. [62] SS1, SS2 2020 Conference
E42 Scopus Parto et al. [63] SS1 2020 Conference
E43 Scopus Pereira et al. [64] SS1 2020 Conference

E44 Scopus Anton et al. [65] SS2 2019 Conference
E45 Scopus Anton et al. [66] SS2 2019 Conference
E46 Scopus Cupek et al. [67] SS1 2019 Conference
E47 Scopus, IEEE Iatrou et al. [68] SS1 2019 Conference
E48 IEEE Torres et al. [69] SS1, SS2 2019 Conference

E49 IEEE Arévalo et al. [70] SS1 2018 Conference
E50 IEEE Arévalo et al. [71] SS1 2018 Conference
E51 ACM Hormann et al. [72] SS1, SS2 2018 Conference
E52 Scopus Kirmse et al. [73] SS1 2018 Conference

5. Results
We have structured our findings to directly answer each of the revised RQs outlined in

Section 3.1. To help readers navigate our analysis, Table 2 acts as a guide, showing where
each RQ is addressed through specific sections, figures, and tables. This systematic structure
provides clear insight into how the reviewed literature addresses each research question.

The result is a set of articles to read and answer the research questions and, based
on the results, write this research. Figure 2 shows the temporal evolution of primary
studies from 2017 to 2024, with a logarithmic trend line. Starting with 6 studies in 2017,
a significant increase is observed up to 18 studies in 2018, followed by a period of more
gradual growth. The number of studies peaks in 2023 with 48 publications, then declines to
approximately 40 studies in 2024. The logarithmic trend line suggests that, although the
field has experienced sustained growth, the growth rate is leveling off over time.

On the other hand, Figure 3 shows the distribution of different types of academic
publications. Articles of journals account for the largest proportion with 43.4% of the total,
closely followed by conferences with 39.8%. Surveys account for a smaller proportion
with 7.9% and book chapters at 6.6%. The smallest categories are conference reviews with
1.7% and short papers with just 0.5% of the total. This distribution suggests that most
publications in this field are done mainly through scientific journals and conferences.
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Table 2. Mapping research questions by sections, tables, and figures.

Research Question Sections Tables Figures

RQ1 Section 5.1 Tables 3 and 4 Figure 4
RQ2 Section 5.4 Table 6 -
RQ3 Sections 5.2 and 5.5 Tables 5 and 7 Figure 5
RQ4 Sections 5.4 and 5.5 Tables 6 and 7 -
RQ5 Section 5.3 Table 5 Figure 5
RQ6 Section 5.6 Table 8 -

Figure 2. Trend of the Machine Learning techniques within industrial processes according to current
scientific publications.

Figure 3. Nature of the studies that have addressed the process of Machine Learning techniques
within the industrial process.

5.1. Applications

This systematic analysis identifies ten key application areas where Machine Learning
and OPC-UA technologies converge. Table 3 provides a comparative summary of these
applications, while Figure 4 illustrates their percentage distribution. Additionally, Table 4
highlights real-world examples from primary sources, offering a practical perspective on
these implementations.
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Figure 4. Percentage distribution of the applications analyzed.

Quality control: The fusion of OPC-UA with deep learning has revolutionized indus-
trial inspection systems. Fernández et al. [60] pioneered this integration by using thermal
imaging and CNN-LSTM architectures to detect welding defects in real time. Rath et al. [55]
expanded this approach to textile manufacturing, creating vendor-independent protocols
for predictive quality control across distributed production chains. Velesaca et al. [28] now
represent the cutting edge, combining thermographic imaging with deep neural networks
to achieve unprecedented accuracy in defect classification.

Monitoring and control systems: The evolution of these systems began with
Arévalo et al. [70], who integrated Machine Learning into cloud-based platforms using
evidence theory to fuse heterogeneous data streams. Iatrou et al. [68] achieved a tech-
nological breakthrough by embedding OPC-UA servers directly into hardware, bridging
operational devices with IT infrastructure. Kedari et al. [46] further advanced remote
monitoring capabilities, enabling secure supervision of critical processes with controlled
latency thresholds.

Intrusion detection: Modern intrusion detection systems build on foundational work
by Anton et al. [66], who identified anomalous patterns in OPC-UA network traffic.
Hildebrandt et al. [62] elevated this approach by detecting supply chain vulnerabilities
through encrypted data flow analysis. The current state of the art features Bindra and
Aggarwal [22], who implemented convolutional neural networks to detect multi-stage cy-
berattacks in real time, reducing false positives by 40% compared to conventional methods.

Virtual industrial control: Industrial process virtualization has evolved from Park et al. [47]
foundational frameworks to hybrid physical-digital architectures. Nam et al. [36] devel-
oped OPC-UA interfaces that synchronize digital twins with physical equipment, enabling
dynamic process adjustments. Rehmer et al. [26] advanced this further with predictive
simulation systems that anticipate production line failures with 92% accuracy.

Predictive maintenance: The transition from reactive to predictive models began
with Arévalo et al. [71] cloud-based vibration analysis systems. Soller et al. [56] en-
hanced these models by incorporating multisensory data and multivariate trend analysis.
Friedrich et al. [24] now demonstrate self-optimizing algorithms that adjust maintenance
schedules based on operational wear patterns, reducing unplanned downtime by 68%.

Process optimization: Modern optimization strategies combine real-time data streams
with adaptive analytics. Torres et al. [69] established the groundwork by correlating process
variables with key performance indicators. Nohl et al. [53] implemented unified OPC-UA
architectures enabling operational adjustments in under 200 ms. Gong et al. [45] now
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employ recurrent neural networks to model nonlinear processes, achieving 15–20% energy
efficiency gains in pilot installations.

Data processing and validation systems: Current validation frameworks benefit from
Bakakeu et al.’s [58] semantic ontologies for multi-source data verification. Tufek [42]
enhanced these systems with contextual inference engines that detect data anomalies in
real time. Tufek et al. [43] further advanced this field by integrating federated learning
techniques for distributed validation without compromising data confidentiality.

Data integration framework: Interoperability in complex environments is enabled by
Kirmse et al. [73] framework for heterogeneous data ingestion. Lockner et al. [34] optimized
integration processes through adaptive preprocessing, reducing implementation timelines
by 70%. Hirsch et al. [33] now demonstrate scalable OPC-UA architectures capable of
managing petabyte-scale operational data with sub-50 ms latency.

Industrial robotics: Robotic system integration began with Pereira et al.’s [64] DINA-
SORE architecture for multi-robot coordination. Webb et al. [44] enhanced these systems
with reinforcement learning interfaces for contextual adaptation. Diprasetya et al. [30] now
combine 3D vision systems with remote haptic controls, enabling human-robot collabora-
tion with micrometer-level precision.

Communication systems and networks: The evolution of industrial networks is exemplified
by Sharma et al. [40], who designed fault-tolerant architectures for critical environments. Pospisil
and Fujdiak [37] improved interoperability through dynamic protocol identification mechanisms.
Current developments prioritize AI-driven network segmentation and adaptive security protocols
to counter multi-vector cyber threats while maintaining sub-millisecond latency.

Finally, Table 3 synthesizes the industrial application landscape enabled by OPC-UA
and related ecosystems, linking sensors/devices with dominant data modalities and suit-
able ML families. Clear cross-cutting patterns emerge: convergence on PLCs, OPC-UA
servers/gateways, and vision/telemetry; multimodal data (images, multivariate time se-
ries, network flows) with challenges of class imbalance, drift, and interoperability; and a
toolbox spanning classical ML (RF/XGBoost, SVM), anomaly detection (One-Class, autoen-
coders), deep learning (CNN/LSTM/Transformers), and control/optimization methods
(RL, Bayesian surrogates). This structure reflects growing maturity in quality control,
predictive maintenance, and robotics, while data integration and cybersecurity continue
to drive robust and interpretable methodologies. Overall, the mapping provides a practi-
cal guide to align instrumentation and data management with the most appropriate ML
techniques for each operational objective.

Table 3. Applications found in the main primary information sources.

Application Sensors/Devices Data ML Families OPC-UA Role Refs.

Quality control

RGB/thermal
cameras; line-
scan/inspection
cells with
PLC/encoder
triggers;
illumination
controllers

Image frames/se-
quences; thermal
patterns; class
imbalance;
variation in
illumination/-
pose/occlusion

CNN/YOLO;
CNN-LSTM;
SVM/RF on
edge;
augmentation
and domain
adaptation

Acquisition and
trigger via
Services/Sub-
scriptions;
Information
Model for vision
states/results;
FSM/VDMA
Vision in edge
deployments

[25,27,28,50,51,
55,57,60]
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Table 3. Cont.

Application Sensors/Devices Data ML Families OPC-UA Role Refs.

Monitoring and
control systems

PLCs; OPC-UA
servers; smart
sensors;
SCADA/
historians

Multivariate
time series;
alarm/event
logs;
configuration
metadata

RF/GB for
tabular;
LSTM/Temporal
CNN for
dynamics;
interpretable
linear baselines

Unified access
via Services/Sub-
scriptions;
Information
Model for
semantic
consistency;
events/alarms

[23,35,39,46,61,
67,68,70]

Intrusion
detection

Taps on OPC-UA
networks; gate-
ways/servers;
PLC/SCADA;
endpoint agents;
physical test
sensors

Packet/flow
metadata and
timing;
encrypted traffic;
strong class
imbalance;
correlation with
physical data

RF/XGBoost;
autoencoders
and One-Class
SVM; CNN over
flows; ensembles

Protocol seman-
tics/telemetry as
features;
Information
Model for asset
typing in CPPS

[22,48,49,62,65,
66]

Virtual industrial
control

PLCs/robot
controllers;
physical sensors;
simulators/digi-
tal twins;
OPC-UA bridges

Synthetic–real
trajectories;
state/action logs;
calibration
parameters;
version drift

MLP/regression;
LSTM for long
horizons;
Bayesian
surrogate models
with uncertainty

Information
Model for
twin–asset
alignment;
bidirectional
sync via Services;
FSM for
lifecycles

[26,29,32,36,38,
41,47]

Predictive
maintenance

Accelerometers
(vibration);
current/voltage;
temperature;
legacy machines
via OPC-UA
gateways

Multivariate
time series with
drift/seasonal-
ity; scarce failure
labels; class
imbalance

RF/GB;
LSTM/Temporal
CNN/Trans-
formers;
autoencoders/one-
class; federated
learning

ComProto to
unify condition
data;
Information
Model for
asset/indicator
hierarchies;
events for alerts

[24,31,54,56,59,
71]

Process
optimization

Process variables
and actuators via
OPC-UA;
controllers

Correlated
multivariate
signals;
multi-objective
trade-offs
(throughput,
energy, quality)

Regression and
Bayesian
optimization;
RL/MPC with
learned
surrogates;
interpretable
models

Closed-loop
exchange;
Information
Model exposing
setpoints/KPIs;
safe actuation
patterns

[45,52,53,63,69]

Data processing
and validation
systems

PLCs, MES/ERP,
sensors, robots;
OPC-UA
gateways

Schema
heterogeneity;
missingness;
event and
metadata
streams

Rule learning
and outlier
detection;
NER+SVM for
specs parsing;
embeddings/-
graphs for
ontology
validation

Companion
specs and
Information
Models for
semantic
harmonization;
extraction/vali-
dation via
Services

[42,43,58,72]
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Table 3. Cont.

Application Sensors/Devices Data ML Families OPC-UA Role Refs.

Data integration
framework

Multi-vendor
devices;
gateways;
historians; edge
brokers

High volume/ve-
locity;
multi-format and
multi-rate;
interoperability
constraints

Not ML-centric;
anomaly filters;
schema
matching/entity
resolution with
embeddings

Canonical
interface and
address space
modeling;
mapping to big
data; pipeline
orchestration

[33,34,73]

Industrial
robotics

RGB/thermal
vision;
force–torque and
encoders;
ABB/KUKA
controllers;
PLC/ROS
synchronization

Trajectories and
images/video;
precise
timestamps;
synchronized
with control

CNN/YOLO for
perception; RL
for safe policies;
classical control +
learned
estimators

Bridge PLC/S-
CADA–robots/
ROS;
Information
Model for
states/-
tasks/kinemat-
ics

[30,44,64]

Comunication
systems and
networks

Switches/
gateways;
TSN/DetNet
components;
endpoints;
telemetry agents

Flow telemetry
(delay, loss,
jitter); device
fingerprints;
burstiness
patterns

XGBoost/RF for
device/traffic
identification; RL
for routing/QoS;
anomaly
detection for
integrity

Load
characterization
and QoS-aware
interfacing;
eventing for SLA
and
reconfiguration

[37,40]

Table 4. Examples of applications found in the main primary information sources.

Application Application

Type: Quality control Type: Monitoring and control systems
Title: Anomaly Detection in Industrial
Production Products Using OPC-UA and
Deep Learning [28]

Title: Integrating Computer Vision in a
CODESYS PLC to Enable Intelligent
Object Identification [23]
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Table 4. Cont.

Application Application

Type: Virtual industrial control Type: Intrusion detection

Title: Predictive digital twin for offshore
wind farms [32]

Title: Enabling data-driven anomaly
detection by design in cyber-physical
production systems [48]

Type: Predictive maintenance Type: Process optimization

Title: Fog Computing Platform for
Industrial IoT [54]

Title: Data Analytics Architecture for
Energy Efficiency Optimization in
Industrial Processes [53]

Type: Data processing and validation
systems Type: Data integration framework

Title: Reasoning over OPC UA
Information Models using Graph
Embedding and Reinforcement
Learning [58]

Title: An architecture for efficient
integration and harmonization of
heterogeneous, distributed data sources
enabling big data analytics [73]
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Table 4. Cont.

Application Application

Type: Industrial robotics Type: Communication systems and
networks

Title: Integration of ABB Robot
Manipulators and Robot Operating
System for Industrial Automation [30]

Title: Toward Deterministic
Communications in 6G Networks: State of
the Art, Open Challenges and the Way
Forward [40]

5.2. Techniques

The convergence of artificial intelligence and OPC-UA has undergone a remarkable
transformation in recent years, revealing significant patterns and trends in its implementa-
tion and evaluation. Our analysis of the specialized literature highlights a preference for
certain techniques that have proven particularly effective in industrial settings, supported
by a diverse set of performance metrics. Table 5 provides the details of the techniques
found in the analyzed articles. On the other hand, the description of the abbreviation of the
techniques and metrics shown in Table 5 is listed in the last section, Abbreviations.

As a starting point, it is important to highlight the studies related to FUT, encompassing
16 references. These works present approaches specifically designed to facilitate the future
incorporation of Machine Learning techniques in industrial environments. While they
currently do not directly implement ML algorithms, they establish the necessary structural
foundations for future integration, underscoring their crucial role in the evolution toward
more intelligent industrial systems [25,30,72].

Among specific techniques, Convolutional Neural Networks (CNNs) have established
themselves as one of the most robust and reliable approaches in OPC-UA implementations.
Recent studies by Bindra, Revankar, and Rahadian [22,27,49] consistently report accuracies
above 98%, setting a high standard for industrial applications that demand visual analysis
and real-time signal processing.

On the other hand, Random Forest (RF) is another highly effective technique, distin-
guished by its robustness and consistency across various application scenarios. Research
by Kedari and Anton [46,66] demonstrates RF implementations achieving accuracies be-
tween 98–100%, significantly outperforming alternative techniques such as SVM and SLR.
Its ability to handle non-linear data and resistance to overfitting have contributed to its
widespread adoption in industrial settings.

Hybrid architectures, particularly CNN-LSTM integration, have gained prominence
in applications requiring simultaneous temporal and spatial processing. Fernandez’s
work [60] demonstrates the effectiveness of this combination, achieving 98.9% accuracy by
leveraging the complementary strengths of both techniques.

Federated learning (FL) represents an emerging trend, as evidenced by studies from
Friedrich, Pop, Parto, and Kaymakci [24,52,54,63]. This technique has gained relevance due
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to its ability to maintain data privacy while enabling distributed learning, a crucial aspect
in modern industrial environments.

Recent implementations also show a clear trend toward more sophisticated architec-
tures such as YOLOv8, which has demonstrated exceptional performance in real-time
detection and classification tasks. The works of Filimonov and Velesaca [23,28] vali-
date the effectiveness of this technique, achieving accuracies up to 99% with notably
low processing times.

In the domain of collective decision-making, Majority Voting Classifiers (MVC) have
emerged as an elegant and effective approach. Their fundamental principle of combining
multiple algorithmic perspectives allows them to overcome the limitations inherent to
individual classifiers [51,71]. This consensus capability is especially valuable in industrial
environments where reliability and robustness are a priority, allowing heterogeneous data
and complex situations to be handled competently.

In unstructured information processing, Named Entity Recognition (NER) is open-
ing new horizons, transforming how industrial systems interpret and process technical
documentation. This technology facilitates the digital transition of legacy systems and
significantly improves interoperability between different industrial platforms [42,43].

Recent studies reveal a clear trend towards more diversified Machine Learning tech-
niques, particularly hybrid models such as CNN-LSTM for handling complex time-series
and image data. However, a significant limitation is that most published results are derived
from small datasets or simulated environments. This highlights a critical need for standard-
ized benchmarks and open datasets to enable fair comparisons and enhance reproducibility
across studies. Furthermore, while techniques like DetNet and DQN are promising, their
computational requirements may limit their widespread adoption in resource-constrained
industrial settings.

The ongoing evolution of artificial intelligence in industrial environments consistently
demonstrates the adaptability and robustness of various algorithmic approaches. From
the versatile capabilities of ANNs in handling dynamic operational environments to the
strength of MVC in building reliable consensus, each technique brings unique advantages
to industrial applications. The increasing integration of multiple techniques, exemplified
by combinations like DBN-BPNN, suggests a future where technological convergence will
be the primary driver of innovation in industrial automation.

In conclusion, while CNNs, RF, and hybrid CNN-LSTM models report high accuracy,
their relative advantages are scenario-dependent:

1. Visual inspection (thermal or RGB): CNNs/YOLO excel when sufficient labeled data
and controlled optics are available; performance degrades with domain shifts (illumi-
nation, angle, lens contamination) unless data augmentation or domain adaptation
is applied.

2. Tabular/heterogeneous signals: RF delivers robust performance on mixed, non-linear
features with limited tuning, often outperforming SVMs in noisy environments; how-
ever, it may underperform deep sequential models on long temporal dependencies.

3. Temporal dynamics: CNN-LSTM hybrids are preferable when spatio-temporal pat-
terns matter (e.g., welding beads, robot trajectories), but they increase compute and
latency costs at the edge.

Drivers of disparities observed across studies include dataset size (small/simulated vs.
large/real-world), sensor noise and environmental variability, operator-induced process
changes, and strict real-time constraints. Studies reporting near-perfect accuracy often
rely on small or controlled datasets; reproducibility under diverse industrial conditions
remains limited, highlighting the need for open benchmarks (see Section 5.6 and Future
Work Section 6).
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5.3. Metrics

In terms of evaluation metrics, there is an evolution towards more comprehensive
approaches that go beyond simply measuring accuracy. While accuracy continues to
be the most reported metric, more rigorous studies incorporate a broader set of met-
rics, including F1-Score, Precision, and Recall, providing a more complete assessment of
system performance.

Metrics specific to regression and prediction applications, such as Root Mean Squared
Error (RMSE) and Mean Absolute Percentage Error (MAPE), have proven to be fundamental
in the evaluation of predictive models. For example, the work of Minh et al. [35] reported
impressive MAPE errors below 2% and coefficients of determination (R2) above 0.94,
showing high accuracy in predictions.

Performance evaluation in industrial implementations has evolved to include domain-
specific metrics such as quality of control (QoC) and production efficiency. The work
proposed by Wang et al. [29] exemplifies this trend, reporting 100% production efficiency
and 95% resource utilization rates, crucial metrics in industrial production environments.

The current trend in the evaluation of OPC-UA-based systems clearly favors multi-
metric evaluation frameworks. These frameworks consider not only technical accuracy, but
also practical aspects such as computational efficiency, scalability, and system robustness.
In this way, metrics to evaluate real-time and latency considerations have gained significant
importance, reflected in the use of metrics such as RTT (Round Trip Time) and E2E (End-
to-end delay) [24,28]. The study by Nam et al. [36] demonstrates the importance of these
metrics in robotic applications, reporting low RTTs (83–156 ms), while Sharma et al. [40]
obtain low E2E (5–20 ms) using the DetNet approach.

To visually analyze the techniques and metrics, word cloud graphics are used. The
two-word clouds created reveal different aspects of a study related to Machine Learn-
ing and performance metrics. The first-word cloud Figure 5 (left) emphasizes frequently
mentioned deep-learning algorithms and technologies, such as “SVM”, “ANN”, “CNN”,
“MVC”, and “MLP”. Interestingly, the term “FUT” also appears prominently, indicating
ongoing efforts to design architectures for future integration with Machine Learning tech-
niques. Furthermore, frameworks such as “YOLOv3” and “YOLOv8” are mentioned. The
second-word cloud Figure 5 (right) focuses on metrics and evaluation measures, high-
lighting terms like “Latency”, “Reliability”, “Resource utilization rate”, and “Production
Efficiency”, along with technical metrics such as “Acc.”, “MSE”, “MAPE”, “E2E”, and
“RTT”. This distribution suggests a study that encompasses both performance and effi-
ciency aspects, as well as specific implementations of deep-learning algorithms and their
specific industrial implementation.

Figure 5. (left) Word cloud based on techniques. (right) Word cloud based on metrics.
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Table 5. Techniques found in the main primary information sources.

Reference Year Techniques ML Metrics OPC-UA Metrics

Bindra and
Aggarwal [22] 2024 CNN, RF, GB, SVM

CNN (Acc. = 98%, P = 98%, F1 =
97%, R = 97%); RF, GB, SVM
(Acc. = 86–91%); RF, GB, SVM
(P = 85–90%); RF, GB, SVM (F1 =
84–89%); RF, GB, SVM (R = 84–89%)

Revankar et al. [27] 2024 CNN (Inception
Model V3) Acc. = 98.84% -

Rahadian et al. [49] 2022 CNN Acc. = 99.9%, P = 99.9%, R = 1.0,
F1 = 0.999 -

Kaymakci et al. [52] 2021 FL, LSTM-CNN MAE = 0.12 -
Fernandez et al. [60] 2020 CNN-LSTM Acc. = 98.9% -

Kedari et al. [46] 2022 RF, SLR RF (Acc. = 98%), SLR (Acc. = 75%) -

Pereira et al. [64] 2020 RF, SVM, ANN Best RF; Metrics (P, R, F1); No
values are presented -

Anton et al. [66] 2019 RF, SVM
RF (Acc. = 99.84–99.98%); SVM
(Acc. = 90.81–92.53%, F1 =
85.2–94.9%)

-

Arévalo et al. [70] 2018 RF, AB, ANN MLP,
DSET

RF (Acc. = 99.83–100.00%); ANN
MLP (Acc. = 71.31–96.65%); AB
(Acc. = 87.80–100%); DSET
(Acc. = 99.83–100%)

-

Friedrich et al. [24] 2024 FL - -
Pop et al. [54] 2021 FL QoC = 0.4103 -

Parto et al. [63] 2020 FL, IGNB -

Latency of IGNB
prediction in the fog
cluster =
828.8 ± 24.2 ms,
Latency of IGNB
federated learning
in the cloud =
2.4 ± 0.4 ms

Filimonov et al. [23] 2024 YOLOv8 Acc. = 100%, F1 = 1.0 PTPI = 80.4 ms

Velesaca et al. [28] 2024 YOLOv8 Acc. = 93% E2E = 159 ms,
RTT = 168 ms

Gichane et al. [61] 2020 YOLOv3,
YOLO-Tiny

YOLOv3 (Acc. = 79.21%),
YOLO-Tiny (Acc. = 47.75%) -

Minh et al. [35] 2023 ANN

RMSE (X = 0.0150, Y = 0.0104,
Z = 0.0100); MAPE (X = 1.598%,
Y = 1.707%, Z = 1.824%), R2

(X = 0.944, Y = 0.975, Z = 0.964)

-

Park et al. [47] 2022 ANN Acc. = 99.4% -

Bonomi et al. [51] 2021 MVC, DT, RF, MLP,
AB, GB

Best MVC (Acc. = 100%, R = 100%,
TNR = 100%, F1 = 100%) -

Arévalo et al. [71] 2018 MVC, KNN, SVM,
NB

MVC (Acc. = 96.99–99.88%); KNN
(Acc. = 96.34–99.54%); SVM
(Acc. = 93.07–99.77%); NB
(Acc. = 89.64–94.75%)

-
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Table 5. Cont.

Reference Year Techniques ML Metrics OPC-UA Metrics

Tufek [42] 2023 NER No final metrics are specified as this
is an ongoing research proposal -

Tufek et al. [43] 2023 NER, SVM with RBF
NER (IoU = 0.21–0.27); SVM
(P = 0.55–0.57, R = 0.55–0.57,
Acc. = 0.52–0.57, F1 = 0.53–0.57)

-

Schäfer et al. [50] 2022 RL - -

Bakakeu et al. [58] 2020 RL MRR = 76–83, HITS@10 = 88–96,
HITS@3 = 76–88, HITS@1 = 68–85 -

Lockner et al. [34] 2023 SVM, RNN, AB, SVR
SVM (R2 = 0.92); RNN (MSE =
0.031); AB (R2 = 0.805); AB with
SVR (MSE = 0.0032, STD = 0.0055)

-

Soller et al. [56] 2021 One-Class SVM, IF,
AE, MVC

One-Class SVM (Acc. = 46.97%,
P = 0.57, R = 0.57); AE
(Acc. = 45.43%, P = 0.34, R = 0.64);
IF (Acc. = 27.73%, P = 0.26,
R = 0.64); MVC (Acc. = 46.52%,
P = 0.59, R = 0.57)

-

Wang et al. [29] 2024 DQN Production efficiency = 100%,
Resource utilization rate = 95% -

Gönnheimer
et al. [31] 2023 LSTM, RF, FCN,

ResNet LSTM (Acc. = 95.71%) -

Haghshenas
et al. [32] 2023 Prophet Algorithm - -

Nam et al. [36] 2023

JetMax robot arm
powered by Jetson
Nano and Deep
Learning

- RTT (Min = 83 ms,
Max = 156 ms)

Pospisil and
Fujdiak [37] 2023 XGBoost Acc. = 90.91%, P = 93.18%,

R = 90.91%, F1 = 90.65% -

Tiwari et al. [41] 2023 GA, RTE Path tracking accuracy (up to
0.23 mm), MSE position = 0.53 mm2 -

Hildebrandt
et al. [62] 2020 OCC Acc. = 89.5% -

Pinto et al. [48] 2022 iDCA Acc. = 93% -

Rehmer et al. [26] 2024 MLP, PRM, EDM,
IDM All techniques BFR = >90% -

Sharma et al. [40] 2023 DetNet Reliability = >99.999% E2E = 5–20 ms

Wang et al. [57] 2021 DBN, BPNN DBN (Acc. = 97.1%, MSE = 4.2%);
BPNN (Acc. = 88.2%, MSE = 11.2%) -

Poka et al. [25] 2024 FUT - -

Diprasetya et al. [30] 2023 FUT, MLPro
Framework - -

Hirsch et al. [33] 2023 FUT - -
Rosa et al. [38] 2023 FUT - -
Schneider et al. [39] 2023 FUT - -
Webb et al. [44] 2023 FUT - -
Gong et al. [45] 2022 FUT - -
Nohl et al. [53] 2021 FUT - -
Rath et al. [55] 2021 FUT - -
Céspedes and
Barrera [59] 2020 FUT - -
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Table 5. Cont.

Reference Year Techniques ML Metrics OPC-UA Metrics

Anton et al. [65] 2019 FUT - -
Cupek et al. [67] 2019 FUT - -
Torres et al. [69] 2019 FUT - -
Iatrou et al. [68] 2019 FUT - -

Hormann et al. [72] 2018 FUT, Feature
extraction - -

Kirmse et al. [73] 2018 FUT - -

5.4. OPC-UA Based Topology Using Machine Learning Techniques

The implementation of ML techniques in industrial environments with OPC-UA
shows diverse deployment patterns across different architectural levels. Table 6 shows
an OPC-UA-based topology using Machine Learning techniques. Cloud deployments
represent a significant trend, with studies like Rath et al. and Friedrich et al. [24,55]
demonstrating the effective use of OPC-UA as a communication protocol in cloud-based
architectures. Some implementations extend beyond simple cloud deployment, incorpo-
rating fog layer capabilities and federated learning approaches, as shown in the works of
Parto and Pop [54,63], leading to more sophisticated distributed architectures.

Edge computing has also emerged as another prominent deployment location. Basic
edge deployments, as demonstrated by Rosa et al. [38] and Gong et al. [45], primarily utilize
OPC-UA as a communication protocol. More specialized edge implementations, such as the
DINASORE framework used by Pereira et al. [64] and Pinto et al. [48], leverage OPC-UA’s
information model and address space model capabilities. Furthermore, hardware-specific
edge implementations using Raspberry Pi and Nvidia Jetson Nano platforms, as shown in
Revankar and Torres’ work [27,69], demonstrate the versatility of OPC-UA on resource-
constrained edge devices.

Local computer implementations represent the largest category of deployments, with
numerous studies from researchers like Gonnheimer, Bindra, and Wang [22,31,57], demon-
strating the effectiveness of OPC-UA as a communication protocol in traditional computing
environments. These implementations often focus on specific industrial applications and
demonstrate the protocol’s versatility in handling various Machine Learning tasks. Table 6
further details specialized deployment scenarios. For instance, Hardware-in-the-Loop
(HiL) simulation demonstrated by Schafer et al. [50] uniquely utilizes both OPC-UA’s
information modeling and communication protocol capabilities. Process control level
implementations, as shown in Poka’s work [25], and workstation-based deployments,
including Anton’s [66] anomaly detection system and Velesaca’s [28] implementation using
OPC-UA Finite State Machine, represent more specific architectural approaches. On the
other hand, Fernandez et al. [60] use a part of the OPC-UA specification that proposes a
finite state machine for vision tasks.

Another key use of OPC-UA involves leveraging its information model to extract data
and logs for subsequent specific analyses, as performed by Kedari et al. [46], Park et al. [47],
and Pospisil et al. [37]. Interestingly, a significant number of studies, including works
by Anton, Bakakeu, and Hildebrandt [58,62,65], utilize OPC-UA as a communication
protocol without explicitly specifying their deployment location. This suggests that
the protocol’s core functionality can be effectively employed regardless of the specific
underlying architecture.

Finally, this diverse range of deployment locations and implementation approaches
demonstrates OPC-UA’s flexibility and scalability across different architectural levels, from
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resource-constrained edge devices to powerful cloud infrastructures, while maintaining its
core functionality as either a communication protocol or information model framework.

Table 6. OPC-UA-based topology using Machine Learning techniques.

Technique Location OPC-UA Usage Specification Part References

Cloud OPC-UA communication
protocol Part 3 [14], 4 [15], 5 [16] [24,35,55,59,70,71]

Cloud, Fog Layer,
Federated Learning

OPC-UA communication
protocol Part 3 [14], 4 [15], 5 [16] [54,63]

Edge OPC-UA communication
protocol Part 3 [14], 4 [15], 5 [16] [38,40,45]

Edge, DINASORE OPC-UA information
model Part 3 [14], 4 [15], 5 [16] [48,64]

Edge, Raspberry Pi, Nvidia
Jetson Nano

OPC-UA communication
protocol Part 3 [14], 4 [15], 5 [16] [27,36,39,69]

Edge VDMA OPC-UA vision
companion specification

Part 3 [14], 4 [15], 5 [16],
16 [18] [60]

Hardware in-the-Loop
(HiL) simulation

OPC UA information
model, communication
protocol

Part 3 [14], 4 [15], 5 [16] [50]

Local computer
OPC-UA information
model, communication
protocol

Part 3 [14], 4 [15], 5 [16] [22,23,26,29–32,37,41–
44,46,49,51–53,56,57,61,67]

Not mentioned OPC-UA communication
protocol Part 3 [14], 4 [15], 5 [16] [33,34,47,58,62,65,68,72,73]

Process control level OPC-UA communication
protocol Part 3 [14], 4 [15], 5 [16] [25]

Workstation OPC-UA communication
protocol Part 3 [14], 4 [15], 5 [16] [66]

Workstation OPC-UA Finite State
Machine

Part 3 [14], 4 [15], 5 [16],
16 [18] [28]

5.5. ML Techniques Classification and OPC-UA

This section classifies the Machine Learning techniques found in the analyzed articles,
aligning with the taxonomy proposed by Kotsiantis et al. [74,75], as detailed in Table 7. The
table also includes the specific usage role of OPC-UA for each ML category.

Detailed analysis reveals that OPC-UA plays a multifaceted role in ML implementa-
tions for industrial automation. Table 7 shows that OPC-UA primarily serves as a universal
communication protocol (ComProto) in 71.43% of implementations, enabling interoperabil-
ity between heterogeneous systems.

Additionally, 21.43% of implementations leverage its semantic information model
(InfoModel) to structure data in a semantically rich manner, optimizing Machine Learn-
ing processing. A smaller portion, 7.14%, utilizes advanced features such as finite state
machines and companion specifications (FSM and VDMA) for highly specific applications.
This versatility is complemented by its architectural adaptability, supporting consistent
deployments across cloud, edge, and on-premises environments.
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Table 7. Relationship between Machine Learning techniques and OPC-UA usage.

Classification Machine Learning Approach OPC-UA Approach References

Perceptron Based

CNN ComProto [22,27,49]
InfoModel [22]

CNN-LSTM ComProto [52]
VDMA [60]

CNN-YOLO ComProto [23,61]
InfoModel [61]
FSM [28]

MLP ComProto [26,51,71]
ANN ComProto [35,47]

InfoModel [64]
DBN/BPNN ComProto [29]
LSTM ComProto, InfoModel [31]
DQN ComProto [29]

Logic Based GA ComProto [41]

Statistical Learning RF ComProto [46,66]
NB ComProto [63,71]

Support Vector Machines SVM ComProto [34,43]
One-Class SVM ComProto [56,62]

Combining Classifiers
FL ComProto [24,54]
AB ComProto [34,51,70]
XGBoost ComProto [37]

Reinforcement Learning RL ComProto [50,58]
InfoModel [50]

Specialized Techniques

NER ComProto [42,43]
Prophet ComProto [32]
iDCA InfoModel [48]
DetNet ComProto [40]

Among the Machine Learning techniques found, Convolutional Neural Networks
(CNN) establish themselves are the most popular technique in OPC-UA implementa-
tions, primarily utilizing the communication protocol while occasionally leveraging the
information model for enhanced data structuring, as demonstrated in [22,27,49]. These im-
plementations excel in industrial quality control applications, where they perform real-time
visual analysis and defect detection in manufacturing processes. The hybrid CNN-LSTM
architectures, in [52,60], extend these capabilities by incorporating OPC-UA’s VDMA speci-
fication for complex temporal-spatial applications, particularly in welding defect detection
using thermal imaging systems. CNN-YOLO implementations, referenced in [23,61], com-
bine the communication protocol with the information model to enable intelligent object
identification systems within CODESYS PLCs and industrial computer vision applications
that require real-time processing capabilities.

On the other hand, Random Forest emerges as a highly effective technique that
exclusively employs OPC-UA’s communication protocol, as shown in [46,66], specializing
in critical intrusion detection systems and secure remote monitoring applications. This
technique demonstrates exceptional robustness in handling non-linear industrial data and
provides resistance to overfitting, making it particularly suitable for critical supervision
systems where reliability is paramount. Naive Bayes techniques, proposed in [63,71], also
utilize the communication protocol for process monitoring and optimization applications,
though they are less common in industrial automation scenarios where deterministic
performance is required.
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Also, Support Vector Machines (SVM) and their One-Class variants exclusively utilize
OPC-UA’s communication protocol, according to [34,43,56,62], specializing in anomaly de-
tection and predictive maintenance applications within industrial environments. These tech-
niques demonstrate particular effectiveness in integrating heterogeneous data sources and
systems where model interpretability is crucial for operational decision making. The One-
Class SVM variant has consolidated as a specialized solution for anomaly detection in com-
plex industrial systems, where identifying atypical patterns is fundamental for preventive
maintenance strategies and operational safety protocols in manufacturing environments.

Other techniques, such as reinforcement learning (RL), represent an advanced category
that leverages both OPC-UA’s communication protocol and information model, according
to [50,58], specializing in Hardware-in-the-Loop simulations and reasoning over informa-
tion models through graph embeddings. These implementations are characterized by their
adaptive optimization capabilities in complex industrial processes where dynamic deci-
sion making is required. Genetic Algorithms (GA), documented in reference [41], use the
communication protocol for process optimization applications, while techniques like Deep
Q-Network (DQN) combine both OPC-UA approaches for intelligent control applications
and automated decision-making systems in industrial automation scenarios.

The latest reviewed approach, combining techniques among which are AdaBoost (AB)
and XGBoost, utilizes OPC-UA’s communication protocol according to [34,37,51,70], find-
ing application in distributed monitoring systems and advanced communication networks
for industrial IoT platforms. Federated learning (FL), documented in references [24,54],
represents an innovative approach for industrial IoT platforms that maintains data privacy
while enabling distributed learning across industrial networks. Specialized techniques
like DetNet, referenced in [40], focus on deterministic communications for 6G networks
with stringent reliability requirements and ultra-low latency constraints. Lastly, tech-
niques such as iDCA utilize the information model for anomaly detection by design
in cyber-physical production systems, facilitating proactive quality control and system
monitoring capabilities.

The integration of native security features and real-time communication services po-
sitions OPC-UA as a fundamental element for ML implementations in critical industrial
environments that demand immediate response. This diversity of roles transcends the
traditional function of a communications protocol, establishing OPC-UA as a comprehen-
sive platform for the effective integration of Machine Learning in industrial environments,
where the combination of interoperability, semantic data structure, robust security, and
real-time capabilities is essential for the success of intelligent automation implementations.

5.6. SWOT

This systematic review highlights important aspects of the integration of Machine
Learning techniques with OPC-UA in industrial environments. Through a literature anal-
ysis, the critical strengths, weaknesses, opportunities, and threats (SWOT) (see Table 8)
that characterize current and prospective implementations have been identified. This
SWOT analysis provides valuable insights for organizations considering or implementing
ML-OPC-UA solutions, highlighting both potential benefits and challenges that need to
be addressed.
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Table 8. Findings of strengths, weaknesses, opportunities, and threats (SWOT) in the systematic
literature review.

Strengths:

- Strong interoperability and secure, standardized communication across
heterogeneous systems

- Service-oriented architecture and flexible information modeling for ML integration

- Supports scalable deployments from cloud to edge

- Robust security framework and near real-time data exchange

Weaknesses:

- Lack of standardized evaluation frameworks and open datasets for ML-OPC-UA
solutions

- High computational demands for advanced ML models on resource-constrained
devices

- Interoperability challenges with legacy protocols and fragmented standards

- Limited evidence of large-scale, real-world deployments

Opportunities:

- Development of open benchmarks and empirical validation studies

- Ideal for federated learning and privacy-preserving analytics

- Potential to lead advanced cybersecurity frameworks

- Enabling explainable AI in critical industrial applications

Threats:

- High resource requirements (e.g., GPUs) for ML/DL techniques

- Resistance to change in traditional industrial environments

- Risk of technological obsolescence due to rapid innovation

- Lack of standardized real-world datasets and benchmarks limits objective
validation and slows industry adoption

5.6.1. Strengths

OPC-UA stands out as a central enabler for industrial process automation because it is
more than a transport protocol. It is a comprehensive industrial standard that combines
a communication framework with a rich, unified information model and profiles for
interoperability [11,12]. Its service-oriented architecture (SOA) and information modeling
capabilities (OPC 10000 Parts 3–5) facilitate semantic interoperability across heterogeneous
devices and systems and provide a consistent data abstraction layer that is particularly well
suited for ML pipelines [14–16]. The standard’s security model (OPC 10000-2) integrates
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encryption, authentication, and access control, which is essential for ML-driven applications
operating in safety-critical environments [13].

A further strength is architectural flexibility from edge to cloud. The literature docu-
ments successful deployments that use OPC-UA as a universal communication protocol
in cloud or cloud–fog settings [24,54,55,63] as well as on resource-constrained edge plat-
forms such as Raspberry Pi and Nvidia Jetson Nano [27,38,45,69]. More specialized edge
frameworks (e.g., DINASORE) and workstation/local-computer deployments leverage
both the address space and information modeling to structure data for downstream an-
alytics [22,31,48,57,64]. OPC-UA’s domain-specific extensions also enable higher-level
integrations: companion specifications such as VDMA Vision and finite state machine
(FSM) models have been used to couple perception and stateful control with ML in vision
and welding applications [28,50,60].

OPC-UA’s support for timely data exchange further strengthens its role in ML-centric
control loops. Studies that target deterministic networking report high reliability and
bounded end-to-end latencies, which are conducive to near real-time ML inference in
industrial scenarios [40]. In addition, multiple works exploit the information model to
expose semantically structured telemetry and logs for feature extraction and model super-
vision [37,46,47]. Taken together, these characteristics—standardized semantics, built-in
security, and deployment portability—explain why OPC-UA most often appears as the
interoperability backbone in ML-enhanced industrial systems (see also the distribution by
role in Table 7).

5.6.2. Weaknesses

Despite these advantages, several weaknesses remain for ML-OPC-UA integration.
First, there is a lack of standardized evaluation frameworks and openly available, domain-
representative datasets tailored to OPC-UA-enabled ML scenarios, which hinders objective
benchmarking and reproducibility (as synthesized in our review’s SWOT, Table 8). The
heterogeneity of reported metrics across studies illustrates this gap: while ML task met-
rics are commonly reported (e.g., accuracy/F1 in [37,57,62]; path/MSE metrics in [41]),
OPC-UA/system-level metrics appear inconsistently—exceptions include explicit net-
work/latency measurements such as RTT in [36] and reliability/latency bounds in [40]
(Table 5).

Second, interoperability challenges persist when bridging OPC-UA with legacy con-
trollers, PLC environments, and fragmented domain standards. Practical integrations
often require mapping between OPC-UA address spaces and PLC/industrial stacks (e.g.,
CODESYS and process-control level integrations in [25,61]) or alignment across companion
specifications (e.g., VDMA Vision, FSM usage in [28,50,60]), which can introduce engineer-
ing overhead and semantic mismatch risks in multi-vendor settings.

Third, the computational demands of advanced ML/DL models can strain resource-
constrained OPC-UA deployments at the edge. Although feasibility has been demon-
strated on platforms like Raspberry Pi and Jetson Nano [27,69] and on embedded/robotic
setups [36,39], these deployments typically require careful model optimization and schedul-
ing to avoid contention with OPC-UA server loads and control-cycle constraints.

Finally, evidence of large-scale, real-world production rollouts remains limited in the
surveyed literature. Many studies are conducted as lab-scale testbeds, workstation-based
evaluations, or small pilots (e.g., local-computer categories in [22,31,57]); specialized HiL
or workstation cases in [28,50,66], and a substantial subset does not specify the deployment
context at all [33,34,47,58,62,65,68,72,73]. This reporting pattern underscores the need
for broader, longitudinal validations and standardized benchmarking suites to support
technology transfer at scale.
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5.6.3. Opportunities

The convergence of Machine Learning and OPC-UA technologies presents significant
opportunities for advancing industrial automation, yet several critical areas require fo-
cused development to realize their full potential. Open benchmarks and evaluation suites
represent a fundamental need, requiring curated and representative datasets that span
common industrial tasks such as visual quality control (e.g., CNN/CNN–YOLO use cases
in [22,23,49,61]), network intrusion detection [46], and welding/vision applications lever-
aging FSM/VDMA models [28,60], complete with standardized train/validation/test splits
and comprehensive metrics covering both task accuracy and system constraints including
round-trip time and end-to-end performance as reported in system-level studies [36,40]—as
well as reliability, throughput, and energy consumption (see the heterogeneity of reported
metrics in Table 5). Federated learning in production environments offers promising so-
lutions for privacy-preserving training across multiple plants through OPC-UA–secured
data brokers, implementing lightweight aggregation at fog nodes while incorporating drift
detection and client selection strategies specifically tailored to heterogeneous industrial
devices [24,54,55,63]; OPC-UA’s native security model further supports these distributed
designs [13]. The implementation of explainable AI for operators becomes crucial in in-
dustrial settings, necessitating saliency and attribution methods for visual quality control
systems and counterfactual explanations for tabular and temporal models, and the utiliza-
tion of OPC-UA information models as a semantic layer to anchor explanations directly
to machine states for enhanced operator understanding [14–16,28,60]. Edge optimization
strategies must address the unique constraints of industrial environments through prun-
ing, quantization-aware training, and knowledge distillation techniques—particularly on
resource-constrained devices where OPC-UA is already deployed [27,36,39,69]—while
developing scheduling policies aligned with OPC-UA server loads and programmable
logic controller cycles [25,61], ultimately creating mixed-criticality pipelines that can bound
worst-case inference latency leveraging deterministic networking insights [40].

Emerging paradigms in artificial intelligence, particularly Vision Transformers, large
language models, and generative approaches, are reshaping industrial automation capa-
bilities while presenting unique deployment challenges in OPC-UA integrated environ-
ments. Vision Transformers have demonstrated superior performance in industrial visual
inspection applications, with recent implementations showing enhanced capabilities for
defect detection and quality control in manufacturing environments [76]. Large language
models are being integrated into industrial systems for intelligent automation, with ap-
plications spanning from automated analysis to process optimization in manufacturing
contexts [77]. Meanwhile, generative models, including diffusion-based approaches, are
enabling synthetic defect data generation for addressing data scarcity in semiconductor
manufacturing, particularly for rare fault scenarios in wafer defect detection [78]. The
deployment strategy requires a tiered approach where computationally intensive models
operate in edge-cloud hybrid architectures for comprehensive analytics, while optimized
variants developed through industrial-specific quantization techniques support real-time
inference under strict latency constraints in production environments. OPC-UA serves as
the integration backbone for data exchange and semantic interoperability across manufac-
turing execution systems, enabling seamless communication between AI components and
industrial infrastructure.

5.6.4. Threats

However, significant threats challenge the successful deployment of these technologies,
particularly resource constraints arising from GPU and accelerator scarcity on legacy
production lines; without lightweight model designs and careful runtime orchestration,
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systems may fail to meet critical real-time performance budgets on edge-class platforms
where OPC-UA commonly operates [27,36,39,69].

Interoperability gaps pose another substantial challenge through companion specifica-
tion fragmentation and inconsistent mappings between information models and Machine
Learning feature schemas, which impede system reuse and integration across different
industrial platforms—an issue made evident when bridging OPC-UA with PLC ecosys-
tems and domain-specific companions such as CODESYS/PLC integrations and VDMA
Vision/FSM models [25,28,50,60,61].

The validation deficit in the field stems from the absence of open and realistic datasets,
leading to overly optimistic results based on small or controlled test sets; this is com-
pounded by heterogeneous reporting practices (Table 5) and frequent omissions of de-
ployment context in several works [33,34,47,58,62,65,68,72,73], which ultimately hinders
meaningful comparability between approaches and slows widespread adoption. Security
and safety concerns become amplified when Machine Learning attacks surface, including
adversarial inputs and model extraction vulnerabilities, combined with operational tech-
nology risks; addressing these requires defense-in-depth strategies that extend beyond the
traditional OPC-UA security provisions [13] and align with the threat models motivating
OPC-UA–monitored intrusion detection and secure monitoring use cases [46].

6. Future Directions
Future research should prioritize edge-centric, secure, and explainable deployments

under industrial constraints. Two primary areas emerge as the focal points of research. First,
bringing lightweight Machine Learning directly to factory equipment through federated
learning approaches that can handle real-world data variations while using OPC-UA for
secure coordination [24,79,80]. Second, developing AI systems that factory operators can
actually understand and trust, with clear explanations and human oversight built into
OPC-UA alarm systems [81].

Safety must come first when deploying learning systems in industrial environments.
This means testing AI models in shadow mode before they control real equipment, validat-
ing them through hardware-in-the-loop simulations, and using OPC-UA state machines to
prevent dangerous actions [82,83]. To make lab research work in real factories, we need
better synthetic data generation and techniques that help models adapt from simulated
to actual plant conditions [84,85]. The research community also requires shared datasets,
standardized testing pipelines, and common evaluation metrics that can be utilized by both
industry and academia [86].

Future automated Machine Learning systems should understand industrial constraints
from the start. For edge deployments, this means finding the right balance between model
performance and hardware limitations like processing power, memory, and response time.
For cloud-based systems, it means optimizing entire data pipelines while considering
both accuracy and practical factors like reliability and energy consumption [79,86]. By
connecting these automated systems with OPC-UA’s information model [87], we can track
the evolution of datasets, features, and models throughout their entire lifecycle, making
industrial AI systems more transparent and manageable.

Furthermore, future research directions can be expanded by exploring the integration
of Large Scale Language Models (LLMs) with advanced workflow coordination proto-
cols, such as the Model Context Protocol (MCP). LLMs have demonstrated significant
advantages in managing complex industrial workflows [88], including intelligent decision
making for multi-step processes and dynamic adaptation of production tasks. MCP, for its
part, is widely used for workflow coordination, offering robust capabilities for message
transmission management and task scheduling in industrial environments [89].
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The synergy between LLMs and MCPs, combined with OPC-UA and Machine Learn-
ing technologies, could enable much more sophisticated and intelligent industrial workflow
management. For example, LLMs could interpret and optimize production instructions,
coordinate multi-agent tasks through MCPs, and leverage OPC-UA for secure and inter-
operable data exchange between heterogeneous systems, in addition to modeling and
adding semantics to established plant architectures [90]. This integration would enable
adaptive, explainable, and resilient automation, aligning the future perspective of industrial
intelligence with the most advanced technological trends.

7. Conclusions
The integration of OPC-UA with Machine Learning techniques is consolidating as

a key strategy for advancing industrial process automation. OPC-UA’s strengths—such
as interoperability, security, and architectural flexibility—make it a robust foundation for
deploying intelligent solutions across diverse industrial environments. However, the lack
of standardized evaluation frameworks, persistent interoperability challenges with legacy
systems, and the high computational demands of advanced ML models remain significant
barriers to large-scale adoption.

Despite these challenges, the opportunities for OPC-UA are substantial. Its suitability
for federated learning, privacy-preserving analytics, and advanced cybersecurity frame-
works positions it as a central pillar for the next generation of smart manufacturing. To
fully realize this potential, it is essential to address current weaknesses by developing open
benchmarks, fostering empirical validation, and promoting best practices for integration.
Overcoming resistance to change and reducing dependence on proprietary solutions will
also be critical for sustainable and scalable deployment. In summary, OPC-UA, when
combined with Machine Learning, offers a promising path toward more intelligent, se-
cure, and adaptive industrial automation, provided that the identified challenges are
systematically addressed.
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The following abbreviations are used in this manuscript:

AB AdaBoost
Acc. Accuracy
AE Auto-encoder
ANN Artificial Neural Network
BFR Best Fit Rate
BPNN Back Propagation Neural Network
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CNN Convolutional Neural Network
DBN Deep Belief Network
DetNet Deterministic Networking
DQN Deep Q Network
DSET Dempster-Shafer Evidence Theory
DT Decision Tree
EDM External Dynamics Model
E2E End-to-end delay
FCN Fully Convolutional Network
FL Federated Learning
FUT The architecture establishes a foundation for future integration of ML techniques
F1 F1-Score
GA Genetic Algorithms
GB Gradient Boost
iDCA Dendritic Cell Algorithm modified
IDM Internal Dynamics Model
IF Isolation Forest
IGNB Incremental Gaussian Naive Bayes
KNN K-Nearest Neighbors
LSTM Long-Short-Term Memory
MAPE Mean Absolute Percentage Error
MLP Multi-Layer Perceptron
MRR Mean Reciprocal Rank
MVC Majority Voting Classifier
NB Naive Bayes
NER Named Entity Recognition
OCC One-Class-Classifier
P Precision
PRM Polynomial Regression Model
PTPI Processing Time Per Image
QoC Quality of Control
R Recall
RBF Radial Based Function
ResNet Residual Network
RF Random Forests
RL Reinforcement Learning
RMSE Root Mean Square Error
RNN Recurrent Neural Network
RTE Regression Tree Ensembles
RTT Round Trip Time
R2 R-Squared or Determination Coefficient
SLR Simple Linear Regression
SS Standard Score
SVM Support Vector Machines
SVR Support Vector Regression
TNR True Negative Rate
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67. Cupek, R.; Gólczyński, Ł.; Ziebinski, A. An OPC UA Machine Learning Server for Automated Guided Vehicle. In Proceedings of
the Computational Collective Intelligence: 11th International Conference, ICCCI 2019, Hendaye, France, 4–6 September 2019;
Proceedings, Part II 11; Springer: Cham, Switzerland, 2019; pp. 218–228.

68. Iatrou, C.P.; Bauer, H.; Graube, M.; Höppner, S.; Rahm, J.; Urbas, L. Hard real-time capable OPC UA server as hardware peripheral
for single chip IoT systems. In Proceedings of the 2019 24th IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA), Zaragoza, Spain, 10–13 September 2019; pp. 1631–1634.

69. Torres, P.; Dionísio, R.; Malhão, S.; Neto, L.; Ferreira, R.; Gouveia, H.; Castro, H. Cyber-physical production systems supported by
intelligent devices (SmartBoxes) for industrial processes digitalization. In Proceedings of the 2019 IEEE 5th International forum
on Research and Technology for Society and Industry (RTSI), Florence, Italy, 9–12 September 2019; pp. 73–78.

http://dx.doi.org/10.15488/11237
http://dx.doi.org/10.1016/j.is.2021.101727
http://dx.doi.org/10.1016/j.precisioneng.2021.08.010
http://dx.doi.org/10.3390/designs4020009
http://dx.doi.org/10.1016/j.promfg.2020.05.135


Electronics 2025, 14, 3749 32 of 32

70. Arévalo, F.; Diprasetya, M.R.; Schwung, A. A cloud-based architecture for condition monitoring based on machine learning. In
Proceedings of the 2018 IEEE 16th International Conference on Industrial Informatics (INDIN), Porto, Portugal, 18–20 July 2018;
pp. 163–168.

71. Arévalo, F.; Oestanto, E.; Schwung, A. Development of a Mobile App for Fault Detection Assessment based on Information
Fusion. In Proceedings of the 2018 IEEE 16th International Conference on Industrial Informatics (INDIN), Porto, Portugal,
18–20 July 2018; pp. 635–640.

72. Hormann, R.; Nikelski, S.; Dukanovic, S.; Fischer, E. Parsing and extracting features from opc unified architecture in industrial
environments. In Proceedings of the 2nd International Symposium on Computer Science and Intelligent Control, Stockholm,
Sweden, 21–23 September 2018; pp. 1–7.

73. Kirmse, A.; Kraus, V.; Hoffmann, M.; Meisen, T. An Architecture for Efficient Integration and Harmonization of Heterogeneous,
Distributed Data Sources Enabling Big Data Analytics. In Proceedings of the 20th International Conference on Enterprise
Information Systems, Madeira, Portugal, 21–24 March 2018; pp. 175–182.

74. Kotsiantis, S.B.; Zaharakis, I.D.; Pintelas, P.E. Machine learning: A review of classification and combining techniques. Artif. Intell.
Rev. 2006, 26, 159–190. [CrossRef]

75. Sharifani, K.; Amini, M. Machine learning and deep learning: A review of methods and applications. World Inf. Technol. Eng. J.
2023, 10, 3897–3904.

76. Hütten, N.; Meyes, R.; Meisen, T. Vision transformer in industrial visual inspection. Appl. Sci. 2022, 12, 11981. [CrossRef]
77. Xia, Y.; Jazdi, N.; Weyrich, M. Applying Large Language Models for intelligent industrial automation. Atp Mag. 2024, 66, 62–71.

[CrossRef]
78. Qiu, X.; Liu, Y.; Jin, Q.; Chen, Y.; Zhuo, C.; Sun, Q. A Diffusion-Based Approach to Wafer Defect Image Generation in

Semiconductor Manufacturing. In Proceedings of the 2025 Conference of Science and Technology of Integrated Circuits (CSTIC),
Shanghai, China, 24–25 March 2025; pp. 1–3.

79. Ficili, I.; Giacobbe, M.; Tricomi, G.; Puliafito, A. From Sensors to Data Intelligence: Leveraging IoT, Cloud, and Edge Computing
with AI. Sensors 2025, 25, 1763. [CrossRef]

80. Zhu, W.; Goudarzi, M.; Buyya, R. FLight: A lightweight federated learning framework in edge and fog computing. Softw. Pract.
Exp. 2024, 54, 813–841. [CrossRef]

81. Carballo, J.A.; Bonilla, J.; Fernández-Reche, J.; Avila-Marin, A.L.; Díaz, B. Modern SCADA for CSP Systems Based on OPC UA,
Wi-Fi Mesh Networks, and Open-Source Software. Energies 2024, 17, 6284. [CrossRef]

82. Gassert, P.; Althoff, M. Stepping Out of the Shadows: Reinforcement Learning in Shadow Mode. arXiv 2024, arXiv:2410.23419.
[CrossRef]

83. Mazzoleni, N.; Bryant, M. Hardware-in-the-loop dynamic load emulation of robotic systems. J. Intell. Mater. Syst. Struct. 2024, 35,
945–959. [CrossRef]

84. Lawrence, N.P.; Damarla, S.K.; Kim, J.W.; Tulsyan, A.; Amjad, F.; Wang, K.; Chachuat, B.; Lee, J.M.; Huang, B.; Bhushan Gopaluni,
R. Machine learning for industrial sensing and control: A survey and practical perspective. Control Eng. Pract. 2024, 145, 105841.
[CrossRef]

85. Rahman, M.A.; Shahrior, M.F.; Iqbal, K.; Abushaiba, A. Enabling Intelligent Industrial Automation: A Review of Machine
Learning Applications. Automation 2024, 6, 37. [CrossRef]

86. Aslam, M.M.; Tufail, A.; Gul, H.; Irshad, M.N.; Namoun, A. Artificial intelligence for secure and sustainable industrial control
systems—A Survey of challenges and solutions. Artif. Intell. Rev. 2025, 58, 349. [CrossRef]

87. Karmaker, S.K.; Hassan, M.M.; Smith, M.J.; Xu, L.; Zhai, C.; Veeramachaneni, K. Automl to date and beyond: Challenges and
opportunities. ACM Comput. Surv. (CSUR) 2021, 54, 1–36. [CrossRef]

88. Raza, M.; Jahangir, Z.; Riaz, M.B.; Saeed, M.J.; Sattar, M.A. Industrial applications of large language models. Sci. Rep. 2025,
15, 13755. [CrossRef]

89. Hou, X.; Zhao, Y.; Wang, S.; Wang, H. Model context protocol (mcp): Landscape, security threats, and future research directions.
arXiv 2025, arXiv:2503.23278. [CrossRef]

90. Velesaca, H.O.; Carrasco, D.; Sappa, A.D.; Holgado-Terriza, J.A.; Agila, W. Industrial Anomaly Detection: Bridging OPC-UA
with Classical and Deep Learning Methods. In Proceedings of the International Conference on Smart Technologies, Systems and
Applications, Quito, Ecuador, 2–4 December 2024; Springer: Cham, Switzerland, 2024; pp. 3–18.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s10462-007-9052-3
http://dx.doi.org/10.3390/app122311981
http://dx.doi.org/10.17560/atp.v66i6-7.2739
http://dx.doi.org/10.3390/s25061763
http://dx.doi.org/10.1002/spe.3300
http://dx.doi.org/10.3390/en17246284
http://dx.doi.org/10.48550/arXiv.2410.23419
http://dx.doi.org/10.1177/1045389X241244506
http://dx.doi.org/10.1016/j.conengprac.2024.105841
http://dx.doi.org/10.3390/automation6030037
http://dx.doi.org/10.1007/s10462-025-11320-9
http://dx.doi.org/10.1145/3470918
http://dx.doi.org/10.1038/s41598-025-98483-1
http://dx.doi.org/10.48550/arXiv.2503.23278

	Introduction
	OPC-UA
	Systematic Review
	Definition of RQs
	Selection of Information Sources

	Selection of Studies
	Results
	Applications
	Techniques
	Metrics
	OPC-UA Based Topology Using Machine Learning Techniques
	ML Techniques Classification and OPC-UA
	SWOT
	Strengths
	Weaknesses
	Opportunities
	Threats


	Future Directions
	Conclusions
	References

