
Contents lists available at ScienceDirect

Pattern Recognition

journal homepage: www.elsevier.com/locate/pr

Edge Craft Odyssey: Navigating guided super-resolution with a fast, 
precise, and lightweight network 

Armin Mehri a, Parichehr Behjati a, Dario Carpio b, Angel D. Sappa a,b,∗

a Computer Vision Center, Autonomous University of Barcelona, Barcelona, 08193, Spain
b ESPOL Polytechnic University, FIEC-CIDIS, Guayaquil, EC090112, Ecuador

a r t i c l e  i n f o

Keywords:
Guided thermal super-resolution
Lightweight network
Blending technique
Edge extraction

 a b s t r a c t

Thermal imaging technology is exceptionally valuable in environments where visibility is limited or nonexis-
tent. However, the high cost and technological limitations of high-resolution thermal imaging sensors restrict 
their widespread use. Many thermal cameras are now paired with high-resolution visible cameras, which can 
help improve low-resolution thermal images. However, aligning thermal and visible images is challenging due 
to differences in their spectral ranges, making pixel-wise alignment difficult. Therefore, we present the Edge 
Craft Odyssey Network (ECONet), a lightweight transformer-based network designed for Guided Thermal Super-
Resolution (GTSR) to address these challenges. Our approach introduces a Progressive Edge Prediction module 
that extracts edge features from visible images using an adaptive threshold within our innovative Edge-Weighted 
Gradient Blending technique. This technique provides precise control over the blending intensity between low-
resolution thermal and visible images. Additionally, we introduce a lightweight Cascade Deep Feature Extractor 
that focuses on efficient feature extraction and edge weight highlighting, enhancing the representation of high-
frequency details. Experimental results show that ECONet outperforms state-of-the-art methods across various 
datasets while maintaining a relatively low computational and memory requirements. ECONet improves perfor-
mance by up to 0.20 to 1.3 dB over existing methods and generates super-resolved images in a fraction of a second, 
approximately 91% faster than the other methods. The code is available at https://github.com/Rm1n90/ECONet.

1.  Introduction

Thermal imaging is highly effective in low visibility conditions, but 
its high cost and technological limitation restricts its accessibility in 
consumer applications. Despite these drawbacks, thermal cameras have 
been used in a wide range of specialized fields such as military affairs 
[1], surveillance [2], firefighting [3], and multi-object tracking [4].

A practical way to expand consumer access to thermal cameras is 
to employ low-resolution thermal cameras, which offer a more budget-
friendly alternative to the high-end models prevalent in specialized 
fields. Super-resolution (SR) techniques are particularly useful in such 
scenarios. Motivated by this, numerous single-image super-resolution 
(SISR) methods have been proposed and have shown strong perfor-
mance [5,6]. However, when dealing with exceptionally small input im-
ages, SISR fails to accurately predict pixels due to the limited availability 
of high-frequency details. This results in a loss of texture and edges in 
the super-resolved image.

Recently, Guided Thermal Super-Resolution (GTSR) ap-
proaches have demonstrated remarkable performance in addressing
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low-resolution thermal imagery [7–10]. This success stems from pair-
ing thermal cameras with high-resolution visible-range RGB cameras, 
which can serve as guiding references for enhancing the quality of 
low-resolution thermal images. Unlike the SISR task, which relies solely 
on a single low-resolution image, GTSR leverages the complementary 
information from high-resolution RGB images of the same scene. These 
RGB images offer detailed insights into edges and structures, while 
thermal images provide crucial temperature distribution data. This 
allows the network to learn how to adaptively select structures to 
transfer and thus have the ability to handle more complex scenarios.

Despite performance improvements, most existing GTSR methods 
still have some drawbacks. A critical aspect of SR involves the recon-
struction of fine details and textures. Existing GTSR techniques, such as 
[7,11,12], achieve this with the help of Convolutional Neural Networks 
(CNNs) and end-to-end learning. However, for texture-rich RGB images, 
irrelevant edges may be transferred to thermal images (known as texture 
over-transferred). Additionally, low-resolution thermal images have dif-
ferent spectral characteristics than RGB images, making them difficult 
to use as guidance for GTSR [7]. These spectral differences between 
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Fig. 1. illustration of different components of Edge Craft Odyssey (ECONet).

the two modalities can introduce inconsistencies and inaccuracies dur-
ing the super-resolution process. As a result, most of the existing GTSR 
methods struggle to effectively utilize RGB information to enhance the 
resolution of low-resolution thermal images.

To tackle the aforementioned problems, we first introduce a Pro-
gressive Edge Prediction (PEP) module to obtain edge attention weights 
beneficial for GTSR. This process activates a subset of intensity edges, 
thereby enabling adaptive transfer of structural textures from visi-
ble RGB images. Second, we propose a novel technique called Edge-
Weighted Gradient Blending (EWGB). EWGB utilizes the output of PEP 
as an adaptive threshold to control the blending intensity between low-
resolution thermal and RGB images. As a result, the proposed techniques 
can effectively preserve unique properties such as detailed texture and 
smooth segmentation across the two modalities. Finally, we present 
a lightweight Cascade Deep Feature Extractor (CDFE), a transformer-
based method [13] that employs adaptive edge enhancement to improve 
high-frequency features and spatial consistency, thereby balancing fea-
ture enhancement and content preservation.

To validate the effectiveness of the proposed approaches, we devel-
oped a deep but lightweight architecture for GTSR named Edge Craft 
Odyssey Network (ECONet), illustrated in Fig. 1. Extensive experiments 
on the different benchmark datasets demonstrate the superiority of the 
proposed architecture over state-of-the-art models in terms of qualita-
tive results, visual quality, running time, and memory usage. In sum-
mary, the main contributions of this paper are outlined as follows:

• A Progressive Edge Prediction (PEP) module that highlights attention 
weights in a lightweight and efficient way, allowing the network to 
focus on more informative features to improve discriminative capa-
bilities.

• A novel blending technique, Edge-Weighted Gradient Blending 
(EWGB), that computes a linear gradient to control blending inten-
sity between the images. This technique improves the preservation 
of relevant features while suppressing irrelevant textures.

• A new lightweight Cascade Deep Feature Extractor (CDFE) that 
introduces adaptive edge enhancement to improve high-frequency 
features and spatial consistency while keeping the architecture 
lightweight.

2.  Related work

Over the past few decades, researchers have explored a variety of 
guided super resolution methods, learning mechanisms, and network 
architectures, each contributing unique advancements to the field. In the 
following section, we’ll focus on the approaches most closely related to 
our work, highlighting their key contributions and progress in the field.

2.1.  Conventional methods

Conventional methods for guided super resolution can be divided 
into three categories: filter-based, optimization-based, and learning-
based methods. Filter-based methods utilize RGB images to guide joint 
filters to detect the edges in other domains. These methods employ tech-
niques, such as joint bilateral upsampling [14,15], weighted mode fil-
ters [16,17], and guided filtering [18]. Optimization-based methods use 
models such as Markov Random Fields [19], non-local means filtering 
[20], and others [21] to solve the problem. Learning-based methods 
include approaches such as bimodal co-sparse analysis [22] and joint 
dictionary learning [23]. Gu et al. [24] introduced a task-driven learn-
ing method for dynamic guidance, while [25] developed an HR edge 
map inference method from high-resolution and low-resolution image
pairs.

2.2.  Deep learning-based methods

Recently, Convolutional Neural Networks (CNNs) have achieved un-
precedented success in various tasks [26,27]. Choi et al. [28] made sig-
nificant advances in the field of single thermal image super-resolution 
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(SR) by introducing a three-layer CNN model, which surpassed the 
performance of traditional algorithms. Subsequently, [29] integrated 
compressive sensing with deep learning techniques to enhance infrared 
SR capabilities. These advances in improving thermal images have led 
to the development of several methods for enhancing near-infrared 
image quality [30,31]. However, these methods often neglect super-
resolution for extremely low-resolution inputs, such as those from af-
fordable thermal cameras. Later, [28] and [32] proposed that employ-
ing visible SR methods or leveraging pre-trained models could yield 
favorable results for thermal images. A great number of deep CNN-
based single-image SR techniques [6,33–36] have demonstrated re-
markable efficacy on visible images in different areas. For example, 
MAda-SR [37] enhances medical image super-resolution across diverse 
modalities using an adaptive optimizer and weighted MSE loss, achiev-
ing superior stability. EDiffSR [38] employs a diffusion probabilistic 
model with an efficient activation network and a conditional prior en-
hancement module to achieve high-quality, computationally efficient 
super-resolution for remote sensing images. PLGNet [39], a two-stage 
prior-guided face super-resolution approach, leverages a hybrid network 
with multiscale feature extraction and prior interaction modules to en-
hance facial reconstruction accuracy and visual quality. TTST [40] im-
proves transformer-based image super-resolution for earth observation 
by adaptively selecting crucial tokens with RTSG, integrating multi-scale 
features via MFL, and leveraging GCA. All these methods suggest their 
potential applicability to thermal imagery. Nevertheless, a common con-
cern with single-image methods is their ability to accurately reconstruct 
high-resolution (HR) images from low-resolution (LR), noisy sensor
inputs.

Numerous GTSR models have been proposed to alleviate the afore-
mentioned problems [7,10,29]. For example, [41] proposed a multi-
modal sensor fusion model to enhance the thermal images with the 
help of RGB images. [42] proposed a U-Net-based model architec-
ture incorporating two encoders to capture both thermal and visible 
information. [10] introduced a Transformer in the Transformer net-
work, called TnTViT-G, an efficient method to extract image features 
hierarchically and fuse them at different architectural levels. Mean-
while, other methods, such as [7,43,44], proposed using edges of the 
visible image to produce high-frequency details. Edge-based guidance 
helps reconstruct better high-frequency details. However, these meth-
ods assume pixel-to-pixel alignment between the low-resolution mea-
surement and the guide image, which is difficult to achieve in the 
case of thermal images due to significant mismatches between low-
resolution thermal images and high-resolution visible images. To this 
end, [45] proposed an edge attention mechanism to highlight the con-
tours informative for guided upsampling. Gupta and Mitra[9] proposed 
a misalignment-map estimation block as a part of an end-to-end frame-
work that adequately aligns the input images for performing guided
super-resolution.

In contrast to previous approaches, our proposed method introduces 
a more efficient strategy to handle misalignment between feature maps 
extracted from the input and guide images enhancing performance and 
accuracy in GTSR.

3.  Proposed method

Guided Thermal Super-Resolution aims to predict a high-resolution 
thermal image  ∈ ℝ𝑀×𝑁  from a low-resolution thermal image ̃
∈ ℝ𝑚×𝑛 with the guidance of the visible image  ∈ ℝ𝑀×𝑁×3 of the same 
scene. Here, 𝑀 ×𝑁 and 𝑚 × 𝑛 represent the height and width of the 
input guided and thermal images, respectively. To perform GTSR, we 
first preprocess ̃  to obtain  ∈ ℝ𝑚×𝑛×3 by expanding its channel di-
mensions to match those of HR RGB-guided image. The 𝐸𝐶𝑂𝑁𝑒𝑡(⋅) pro-
cesses both images by taking into account the interactions between two 
different modalities. In the next section, we will explain the ECONet in
detail.

3.1.  ECONet: Edge Craft Odyssey Network

ECONet is designed to perform guided thermal super-resolution 
(GTSR) by integrating information from a low-resolution thermal im-
age and a high-resolution RGB-guided image. The architecture is com-
posed of several interconnected modules that collaboratively enhance 
the resolution and quality of the thermal image while preserving critical 
edge and texture details. The key components of ECONet are: Progres-
sive Edge Prediction (PEP), Edge-Weighted Gradient Blending (EWGB), 
Cascade Deep Feature Extractor (CDFE) with Edge-Prompted Opera-
tion (EPO), and Thermal Reconstruction Module (TRM). Given the low-
resolution thermal image 

𝐿𝑅 and the high-resolution guided RGB image 
𝐺, we first apply a 3 × 3 convolution layer followed by bicubic upscal-
ing to 

𝐿𝑅, and a 3 × 3 convolution layer to 𝐺. The resulting feature 
maps are then passed through a patch embedding layer to obtain 

𝑒𝑚𝑏
and 

𝑒𝑚𝑏, respectively:


𝑒𝑚𝑏 = Φ

(

 ↑
bic

(

(
𝐿𝑅)

))

, 
𝑒𝑚𝑏 = Φ

(

(𝐺)
)

(1)

where Φ denotes the patch embedding operation as used in Vision Trans-
formers [46],  is a convolution layer, and  ↑

bic is bicubic upscaling. This 
step ensures that both embeddings have the same spatial resolution, 
mapping the input images to a high-dimensional feature space suitable 
for subsequent processing.

3.1.1.  Progressive edge prediction
Zhao et al. [45] introduced Guided Weight Prediction (GESA) to mit-

igate overly strong texture transfer from RGB-guided images. While ef-
fective to some extent, GESA lacked the capacity to capture fine and 
abstract edge features. To address this, we propose Progressive Edge 
Prediction (PEP).

The PEP module takes the guided RGB image 𝐺 as input and pro-
duces an edge attention map 𝐄𝐰. The module is designed to extract 
and refine edge information from the high-resolution RGB-guided im-
age, which is crucial for guiding thermal super-resolution. By focusing 
on edges—regions of significant intensity transitions, the module en-
hances boundary and texture details that are essential for high-quality 
reconstruction. The architecture of the PEP module employs a series of 
convolutions with varying kernel sizes and dilation rates to capture edge 
details across multiple scales. Small kernels target fine, localized edges, 
while larger and dilated kernels expand the receptive field to detect 
broader structures. These features are aggregated to form a comprehen-
sive edge representation. The module operates through a progressive 
refinement process, iterating over multiple blocks. In each block, fea-
tures are downsampled to capture larger-scale edges, refined via convo-
lutional layers, and then upsampled back to the original resolution using 
bicubic interpolation. Skip connections integrate the original input fea-
tures with the refined outputs at each stage, preserving high-frequency 
details that might otherwise be lost during the downsampling and up-
sampling processes. The final refined features are concatenated, passed 
through a convolutional layer, and activated with a sigmoid activation 
function to produce an edge attention map in the range [0, 1]. A key 
aspect of the PEP module is its adaptive thresholding mechanism, facili-
tated by the sigmoid activation. This function maps the aggregated edge 
features to a continuous range, effectively learning a threshold during 
training. Unlike fixed thresholding methods, this adaptive approach dy-
namically adjusts the sensitivity of edge detection based on the input 
data and the specific requirements of the super-resolution task. The PEP 
module can be formulated as follows:

𝐸̃𝑤 = 
(

𝐺) ∈ ℝ𝑀×𝑁×𝐶 . (2)

where  represents the operations within the PEP module, as illustrated 
in Fig. 2. The resulting edge attention map 𝐄𝐰 is subsequently used in 
the EWGB and EPO modules to emphasize edge-related features, ensur-
ing that its spatial resolution matches that of the embedded features.
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Fig. 2. Details illustration of Progressive Edge Prediction module (PEP).

3.1.2.  Edge-weighted gradient blending
A central challenge in GTSR is fusing information from different 

modalities while retaining the distinct characteristics of the first modal-
ity while taking advantage of the RGB-guided image without empower-
ing it during the process. This is naturally challenging since the input 
images come from different domains and present variations in terms of 
resolution and quality. However, the RGB-guided and thermal images 
obtained from the same scenario can provide various types of valuable 
information that can be shared or correlated between the two modali-
ties, such as information related to the shape and edges of the objects. 
Therefore, we present EWGB as a novel gradient-based blending strategy 
for integrating two images from different modalities, focusing primarily 
on adaptively highlighting edges during the process. The EWGB can be 
represented as follows:

𝑊𝐸𝐺𝐵 = G𝑟 × (𝑇
𝑒𝑚𝑏 × Ew)) + G𝑟 × (𝐺

𝑒𝑚𝑏 × Ew)), (3)

where 𝐄𝐰 denotes the edge attention map obtained by the PEP mod-
ule. 𝐆𝑟 denotes linear gradient vector G𝑟 = [𝑔0, 𝑔1,… , 𝑔𝑛−1] where 𝑔𝑖 =
𝑖

𝑛−1  for 𝑖 = 0, 1,… , 𝑛 − 1. 𝐆𝑟 is linearly interpolated between 0 and 1
across the channel dimensions, which acts as a weighting factor that 
determines the contribution of pixel values from two different modal-
ities, allowing direct control of the blending ratio at each pixel along 
a dimension between regions in feature space. Unlike other methods 
such as summation or alpha blending, which treat all pixels equally, 
EWGN effectively combines the details of the input images by using the 
rich boundary information encoded in their gradients. This highlights 
the regions with a high gradient intensity that are often associated with 
edges and discontinuities in the images.

3.1.3.  Cascade deep feature extractor
The CDFE module processes the blended feature EWGB through a 

series of transformer-based blocks, each comprising a Multi-Head Con-
volutional Self-Attention (MH-CSA) and a Hierarchical Feed-Forward 
Neural Network (HFFN). These blocks, inspired by Restormer [47], ef-
ficiently encode local and global dependencies at a low computational 
cost.

The multi-Dconv head transposed attention (MDTA) in [47] is an ef-
ficient self-attention layer with multiple heads, where each head handles 
a specific subset of embedding dimensions. However, this can negatively 

impact the network’s performance, particularly when the token embed-
ding dimension is insufficient. In such cases, the dot product of the query 
and key becomes ineffective as a discriminative capability. Therefore, 
we introduced Multi-Head Convolutional Self-Attention (MH-CSA) and 
Hierarchical Feed-Forward Neural Network (HFFN) with key modifica-
tions to address the problem.

Multi-Head Convolutional Self-Attention (MH-CSA) Generates 
query (𝐐), key (𝐊), and value (𝐕) projections matrix by using 1 × 1 fol-
lowed by 3 × 3 depth-wise convolutions. Then, restructure the queries 
and key projections so that their interaction via dot product produces a 
transposed-attention map 𝐀 with dimensions ℝ𝐶̂×𝐶̂ . The attention map 
is then passed to a conv layer before applying softmax, which can be 
formulated as follows:
Attention(𝐐̂, 𝐊̂, 𝐕̂) = 𝐕̂ ⋅ Sof tmax(1×1(𝐊̂ ⋅ 𝐐̂∕𝛼)), (4)

here, we introduce a 1 × 1 convolutional layer to model the interactions 
among different heads to enhance the discriminative power of the at-
tention weights, which leads the attention map of each head to depend 
on all the keys and queries. As a result, this helps to better differentiate 
between relevant and irrelevant parts of the input patches. Also, addi-
tional depth-wise convolution is applied to (𝐕) projections to allow the 
network to encode the information across spatial positions adaptively.

Hierarchical Feed-Forward Neural Network (HFFN) Is a FFN that 
introduces an improvement over traditional feed-forward networks in 
transformer blocks [10,46]. Previously proposed FFNs failed to perform 
well in the super-resolution task, which requires high-frequency detail 
reconstruction and maintaining spatial coherence. Therefore, HFFN is 
designed to address the limitations by learning diverse representations 
across different levels to recover accurate structural information. HFFN 
facilitates a better understanding of various aspects of the feature by 
integrating hierarchical processing and spatial context awareness into 
the core design of FFN. The HFFN can be represented as follows:
𝐻𝑖 = 𝐺𝐸𝐿𝑈

(

3×3
(

𝐺𝐸𝐿𝑈
(

1×1(𝑋)
)))

, for 𝑖 = 1,… , 𝐿,

𝑌 = 1×1
(

Concat
(

𝐻1,𝐻2,… ,𝐻𝐿
))

,
(5)

where 𝐺𝐸𝐿𝑈 stands for Gaussian Error Linear Unit activation function 
[48]. 𝐿 and 𝐶𝑜𝑛𝑐𝑎𝑡 denote the number of levels in the hierarchical struc-
ture and the concatenation operation along the channel dimension, re-
spectively.
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Each block of the proposed transformer then concatenates with un-
modified information before passing to a 1 × 1 convolution layer to the 
Edge-Promoted Operation.

3.1.4.  Edge-prompted operation
Constructs thermal feature maps with enhanced boundaries and 

edges by aggregating multi-channel information obtained from 
𝑒𝑚𝑏, 

𝑂𝐶𝐷𝐸𝐹 , PEP (𝐸𝑤), and Spatial Gradient operation. The EPO can be seen 
as follows:
𝐸𝑃𝑂 = 𝜆 ⋅ (((𝐺

𝑒𝑚𝑏)⊙ 𝐸𝑤) ⋅ ‖∇𝐺(𝑂𝐶𝐷𝐸𝐹 )‖ + 𝑂𝐶𝐷𝐸𝐹 ), (6)

where (⋅) is the Laplacian filter by convolving with 𝐺
𝑒𝑚𝑏 to highlight 

edges and sharp intensity variations, which correspond to object bound-
aries, texture edges, and other important features. ‖∇𝐺(𝑂𝐶𝐷𝐸𝐹 )‖ de-
notes the magnitude of the Spatial Gradient filter on 𝑂𝐶𝐷𝐸𝐹 , calculated 
as 

√

𝐺2
𝑥 + 𝐺2

𝑦 , where 𝐺2
𝑥 and 𝐺2

𝑦 are the horizontal and vertical compo-
nents of the gradient. 𝜆 is a learnable parameter that scales the con-
tribution of the enhanced perceptual feature component. The EPO ap-
proach brings significant advantages by emphasizing perceptual clarity, 
maintaining detail, and adaptive edge enhancement. Therefore, EPO im-
proves high-frequency features and spatial consistency by using Lapla-
cian and spatial gradient operations to sharpen high-frequency details 
such as edges and textures.

3.1.5.  Thermal reconstruction module
Finally, the thermal reconstruction module (TRM) predicts the high-

resolution thermal image by combining the feature maps derived from 
the feature integration of three parallel paths (EPO, 𝐺, and a skip con-
nection). First, the extracted feature map from the CDFE pass-through 
set of operations can be represented as:
EPO = 𝑤

(

↓
bic

(

 ↑
bic

(

EWGB
)

))

,

out = 𝑤
(


(

𝑤
(

EPO
)))

,
(7)

where  ↑
bic and 

↓
bic represent bicubic upscaling and downscaling oper-

ations, respectively. 𝐸𝑃𝑂 denotes the feature obtained from the Edge-
Prompted Function, whereas  stands for the LeakyReLU activation 
function. By doing so, the network enhances its discriminate ability 
to accurately enhance the pixels through different levels of upscaling, 
bringing it closer to its high-resolution counterpart while producing less 
noise and artifacts. The TRM module can be formulated as follows:
𝑆𝑅 = 𝑇𝑅𝑀(𝐸𝑃𝑂 + 𝐺 + ↑

𝑏𝑖𝑐 (

𝐿𝑅)) ∈ ℝ𝑀×𝑁 , (8)

where 𝑆𝑅 denotes the final super-resolved image. 𝐺 stands for the ob-
tained feature map from the RGB-guided image, followed by two con-
volution layers and activation operations.  ↑

𝑏𝑖𝑐 (

𝐿𝑅) indicates the direct 

upsample connection on the low-resolution thermal image. The detailed 
investigation of our TRM is given in the ablation study section.

3.1.6.  Training loss
Unlike prior works [7,10,45], which usually use 𝑀𝐴𝐸 or 𝑀𝑆𝐸 as 

a loss function, we propose a custom loss function built up by a com-
bination of multiple weighted-loss terms that noticeably improve the 
learning capability of the network. The custom loss function 𝐿𝑜𝑠𝑠𝑓𝑖𝑛𝑎𝑙
can be formulated as:
𝐿𝑜𝑠𝑠𝑓𝑖𝑛𝑎𝑙 = 𝛼1𝐿𝑜𝑠𝑠𝑚𝑎𝑒 + 𝛼2𝐿𝑜𝑠𝑠𝑠𝑠𝑖𝑚 + 𝛼3𝐿𝑜𝑠𝑠𝑔𝑟𝑎𝑑 , (9)

where 𝐿𝑜𝑠𝑠𝑚𝑎𝑒 =
1
n
∑𝑖=1

𝑛 ||𝐼𝑠𝑟 − 𝐼ℎ𝑟||, 𝐿𝑜𝑠𝑠𝑠𝑠𝑖𝑚 = 1 − 𝑆𝑆𝐼𝑀(𝐼𝑠𝑟 − 𝐼ℎ𝑟), 
and 𝐿𝑜𝑠𝑠𝑔𝑟𝑎𝑑 = 1

𝐻𝑊
∑

𝑘
|

|

∇𝐼𝑠𝑟 − ∇𝐼ℎ𝑟|| stand for the mean absolute error, 
the structural similarity index, and the spatial gradient loss function 
between the super-resolved image and ground truth, respectively. ∇
denotes the spatial gradient, computed using the Sobel and convolution 
operators. The 𝛼1, 𝛼2, and 𝛼3 are the hyperparameters to tune the 
weight of each loss function. Using the 𝐿𝑜𝑠𝑠𝑓𝑖𝑛𝑎𝑙 loss function, the 
network generates enhanced and sharper reconstruction images, 
reducing pixel-level mismatch while helping to highlight edge details, 
resulting in perceptually superior SR images.

4.  Experiments

We conduct extensive evaluations on multiple datasets using both 
quantitative and qualitative metrics to demostrate the superiority of 
ECONet. We compare our ECONet against the existing SOTA of guided 
super-resolution methods, including a simple non-guided bicubic up-
sampling technique as a baseline. The evaluated methods include: 
SVLRM [23], JIIF [49], DKN [50], FDKN [50], DAGF [51], PMBANet 
[43], DCTNet [45], and D2A2 [52]. All models were retrained using 
their open-source code and default settings for scale factors ×8,×16, and 
×32.

4.1.  Experimental setup

4.1.1.  Datasets
We evaluate ECONet on two thermal datasets. M3FD [53], and CIDIS 

[53]. The M3FD dataset consists of 870 paired images. We used 820, 30, 
and 20 images for the training, validation, and test phases. The CIDIS 
dataset contains 940 paired images, split into 700 and 200 for the training 
and validation phases and 40 for the test phase.

4.1.2.  Evaluation metric
We employ three widely used evaluation metrics to assess the qual-

ity of the super-resolved results of our ECONet compared with other 
approaches—i.e., peak signal-to-noise ratio (PSNR), Structural Similar-
ity (SSIM), and Learned Perceptual Image Patch Similarity (LPIPS) [54] 
with VGG pre-trained network. Higher values indicate better perfor-
mance for PSNR and SSIM, while lower values are preferable for LPIPS.

4.1.3.  Implementation detail
The training samples are randomly selected with a batch size set 

to 8. The number of training steps is set to 60𝐾. We use the Adam

Table 1 
Quantitative comparison between our proposed ECONet and state-of-the-
art approaches on M3FD and CIDIS benchmark datasets for scale factor 
[×8,×16,×32]. We use the three metrics [PSNR, SSIM, LPIPS]. The best and 
the second-best values are highlighted and underline, respectively.

Scale Model
 M3FD  CIDIS
 PSNR/SSIM/LPIPS  PSNR/SSIM/LPIPS

×8

 Bicubic  25.64/0.7696/0.4579  26.02/0.7867/0.4464
 SVLRM (2021) [23]  26.52/0.7992/0.3915  23.86/0.7434/0.4059
 JIIF (2021) [49]  27.75/0.8441/0.3028  21.68/0.7401/0.3768
 DKN (2021) [50]  29.09/0.8277/0.3626  23.49/0.7504/0.3919
 FDKN (2021) [50]  28.81/0.8180/0.3783  23.33/0.7464/0.3985
 PMBANet (2020) [43]  28.40/0.8510/0.3081 28.81/0.8681/0.3165
 DCTNet (2022) [45]  28.30/0.8219/0.3811  24.59/0.7777/0.3949
 DAGF (2023) [51]  29.54/0.8382/0.3469  26.76/0.8237/0.3247
 D2A2 (2024) [52]  26.82/0.8293/0.3136  26.64/0.8341/0.3272
 ECONet (ours) 29.38/0.8763/0.2717  29.02/0.8788/0.3001

×16

 Bicubic  22.43/0.7056/0.5818  21.66/0.6824/0.5905
 SVLRM (2021) [23]  23.22/0.7253/0.4727  20.26/0.6697/0.4799
 JIIF (2021) [49]  25.47/0.7800/0.3618  19.46/0.6662/0.4311
 DKN (2021) [50]  24.58/0.7510/0.4210  23.10/0.7014/0.4244
 FDKN (2021) [50]  25.29/0.7427/0.4705  22.76/0.6860/0.4705
 PMBANet (2020) [43]  24.85/0.7728/0.4137 24.41/0.7737/0.4041
 DCTNet (2022) [45]  25.70/0.7632/0.4533  21.13/0.6907/0.4670
 DAGF (2023) [51]  26.63/0.7823/0.4209  23.52/0.7269/0.3976
 D2A2 (2024) [52]  24.30/0.7766/0.3890  23.51/0.7700/0.3904
 ECONet (ours) 26.51/0.8280/0.3365  24.79/0.7911/0.3704

×32

 Bicubic  19.76/0.6705/0.6250  21.29/0.6983/0.6276
 SVLRM (2021) [23]  18.64/0.6411/0.5177  19.87/0.6716/0.5019
 JIIF (2021) [49]  24.72/0.7633/0.3698  21.80/0.7232/0.4633
 DKN (2021) [50]  23.74/0.7271/0.4649  21.79/0.6988/0.4759
 FDKN (2021) [50]  22.95/0.7056/0.5122  21.49/0.6925/0.5294
 PMBANet (2020) [43]  –/–/–  –/–/–
 DCTNet (2022) [45]  23.23/0.7119/0.4997  20.65/0.7044/0.4873
 DAGF (2023) [51]  24.35/0.7463/0.4654 22.16/0.7230/0.4580
 D2A2 (2024) [52]  22.71/0.7495/0.4171  22.14/0.7435/0.4449
 ECONet (ours) 24.43/0.8042/0.3409  23.49/0.7644/0.4447
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optimizer and multi-step decay, with the initial learning rate set to 10−3
and decreasing the learning rate at steps 35𝐾 and 50𝐾. For the network 
hyper-parameters setting, the number of transformer blocks in CDFE is 
set to 2, with 6 attention layers, and 4 attention heads. The dimensions 
are set to 64 for the entire network. Following to [45], Lambda is a learn-
able parameter randomly initialized, where 0 ∼ 𝑁(0.1, 0.3). The 𝛼1, 𝛼2, 𝛼3
are set to 3, 10, and 5, respectively. ECONet is implemented using the 
PyTorch framework.

4.2.  Comparison with the state-of-the-arts

4.2.1.  Qualitative comparison
Table 1 reports the quantitative results on two benchmark datasets 

for scale factors of ×8, ×16, and ×32. As can be seen, ECONet shows su-
perior performance, generalizing well across both datasets. In contrast, 
other approaches tend to perform well only on specific datasets or scale 
factors but fail to generalize effectively. ECONet achieves the best per-
formance on all perceptual metrics and either the best or second-best 
results on pixel-wise metrics across various datasets and scale factors. It 
is worth mentioning that the PMBANet [43] and DAGF [51] have almost 
113, 114𝐾 and 2, 440𝐾 parameters, respectively, while ECONet uses only 

948𝐾 parameters. This highlights ECONet’s ability to achieve superior 
performance with significantly fewer parameters.

4.2.2.  Error maps visualization
Fig. 3 shows the error maps of several methods on the CIDIS dataset 

at scale factor ×16. The error maps are color-coded: white, and blue, 
indicate lower error values, while yellow, orange, and red represent 
higher errors. The ECONet produces lower error rates, shown by visu-
alizing more white and blue colors, compared to other methods, which 
demonstrate higher error rates, shown by the greater presence of yellow, 
orange, and red colors. This indicates that the ECONet can enhance the 
visual perception of the image while minimizing reconstruction errors 
and preserving distinctive characteristics of thermal imagery.

4.2.3.  Quantitative comparison
Fig. 4 presents visual results. ECONetsubstantially improves the re-

construction of super-resolved thermal images by integrating LR ther-
mal data with structural cues from visible images. As can be seen, 
the objects located in areas with low light intensity are clearly illumi-
nated and allow easy differentiation between foreground objects and 
the surrounding environment. Moreover, the background details that 

Fig. 3. Visual comparison of error maps on the M3FD dataset for ×16 super-resolution. The error maps are shown in different color ranges: white, blue, yellow, 
orange, and red, representing the error range from zero to one. A higher proportion of white pixels indicates fewer errors (zoom in and see in color for the best view).
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Fig. 4. Visual results on both the M3FD and CIDIS datasets. Note: The test set for the CIDIS dataset was not available (zoom in for best view).

are challenging to identify due to the insufficient illumination have 
distinct boundaries and enough contour information, thereby improv-
ing the overall understanding of the image, particularly when it comes 
to larger-scale factors that cause difficulties for other state-of-the-art
methods.

5.  Ablation study

We conduct ablation experiments to analyze the contribution of each 
module in ECONet. Best and second-best values in the tables are high-
lighted and underlined respectively.

5.1.  Qualitative comparison with PBVS challenge winners

Table 2 compares the performance of various models, including AIR, 
GUIDEDSR, UMKC MCC, and VISION IC, the winners of the PVBS 2024 
challenge [55], and our proposed method ECONet, across two scale fac-
tors (×8 and ×16) using the PSNR and SSIM metrics. Although ECONet 
achieves slightly lower PSNR and SSIM values than other models, such 
as GUIDEDSR and UMKC MCC, it significantly outperforms them in 
terms of model efficiency and compactness. For instance, ECONet has 
only 948𝐾 parameters, which is approximately 632 times fewer than 
GUIDEDSR, which has a massive 600𝑀 network parameters. Despite this
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Table 2 
Comparison between ECONet and PBVS 2024 challenge 
winners.

Scale Model Params
 CIDIS
 PSNR  SSIM

×8

 AIR  3.4M  –  –
 GUIDEDSR  600M  31.52  0.9127
 UMKC MCC  12.17M  30.05  0.8947
 VISION IC  3.30M  29.34  0.8824
 ECONet(ours)  948K  29.02  0.8788

×16

 AIR  3.4M  24.77  0.7878
 GUIDEDSR  600M  25.99  0.8266
 UMKC MCC  12.17M  25.67  0.8167
 VISION IC  3.30M  24.69  0.7928
 ECONet(ours)  948K  24.79  0.7911

Table 3 
Investigation on the impact of EWGB on network perfor-
mance for scale factor ×16. The best and second-best values 
are highlighted and underlined.

Setting
 M3FD  CIDIS
 PSNR  SSIM  PSNR  SSIM

 Sum  26.18  0.7920  24.42  0.7716
 ConCat 26.36 0.8115 24.58 0.7841
 Alpha Blending  25.97  0.7853  24.21  0.7689
 EWGB (ours)  26.51  0.8280  24.79  0.7911

dramatic reduction in complexity, ECONet achieves PSNR of 29.02 and 
SSIM of 0.8788 at scale ×8, 24.79 and 0.7911 at scale ×16. This demon-
strates that ECONet is a highly efficient and lightweight model, mak-
ing it practical for real-world applications where heavy models such 
as GUIDEDSR or UMKC MCC are impractical due to their resource-
intensive requirements.

5.2.  Impact of EWGB

Table 3 evaluates the proposed Edge-Weighted Gradient Blend-
ing (EWGB) against other techniques, i.e., summation, concatenation, 
alpha-blending, and weighted alpha-blending. Unlike other methods, 
EWGB is proposed using the edge information obtained from the pro-
posed PEP module. This allows for a more fine-blending process, fo-
cusing on edge features while ensuring smooth transitions from the LR 
thermal image to the HR RGB-guided image. As illustrated in Table 3, 
ECONet achieves superior outcomes by using EWGB with about 0.18 dB 
performance boosts compared to ConCat operations.

5.3.  Effect of progressive edge prediction

We evaluate the effect of the proposed Progressive Edge Prediction 
(PEP) compared with existing methods and without any edge-guided 
modules as a baseline on the CIDIS dataset. As shown in Table 4, the 
proposed method performed poorly without using any of the modules 
(baseline). We can see that the proposed PEP enhances the network per-
formance by 0.22𝑑𝐵 and 0.16𝑑𝐵 compared to GESA and baseline, respec-
tively. Unlike GESA, PEP uses progressive feature extraction techniques 

Table 4 
ECONet performance on different edge-guided modules for scale 
×16.

 Baseline  GESA  PEP  Params (K)  PSNR (dB)
✓  784  24.57

 ECONet ✓  801  24.63
✓  948  24.79

Table 5 
Performance impact of different settings on the CIDIS dataset.
 #  Settings  Params(K)  X16  X32
 1  w/o EPO  –  24.61  23.29
 1  w/o TRM  836  24.28  23.96
 2  w/o 𝐶(𝑈𝑝∕𝐷𝑜𝑤𝑛)  871  24.67  23.38
 3  w/o LR Skip-Connection  –  24.71  23.44
 4  w/o 𝐿𝑠𝑠𝑖𝑚 + 𝐿𝑔𝑟𝑎𝑑  –  24.63  23.36

 ECONet  948  24.79  23.49

that enable access to abstract edge features by iteratively concatenating 
intermediate feature maps across multiple levels. Therefore, PEP max-
imizes the ability of the network to access the deeper feature maps, 
which contain complex patterns and high-level representations, with-
out adding significant computational costs.

5.4.  Setting investigation on ECONet

Extensive evaluations were performed to confirm the design choices 
of our ECONet. Various experiments were executed to evaluate the im-
pact of each component of our network. As shown in Table 5, #1, 
ECONet performance decreased by almost 0.18𝑑𝐵 without using EPO, 
which shows the effectiveness of our EPO in constructing the multi-
channel feature with enhanced edge and boundary features. #2, We 
carried out an experiment using the ECONet without the TRM module 
and each component of TRM. We reconstructed the SR image directly 
after the CDFE module without the TRM module. The results show that 
the low-cost TRM module can boost the network by 0.51𝑑𝐵, adding only 
112𝐾 parameters. #3, A simple yet effective technique in the TRM mod-
ule can help the network increase its performance. Upscaling, downscal-
ing, and a convolution operation in the TRM can bring 0.12𝑑𝐵 perfor-
mance gain while being almost cost-free. By doing so, the network can 
generalize better to unseen features and give the network a bigger vi-
sion than it needs. #4, The results from settings 4 demonstrate the im-
pact of the proposed loss terms. The results indicate that the proposed 
custom loss can bring marginally satisfactory performance gains, while 
only using 𝐿1 or 𝐿2 loss functions can produce poor results. #6, we also 
removed the LR skip connection integrated with bicubic upscaling op-
erations from ECONet. The results show that residual connections are 
important in boosting the network’s overall performance.

5.5.  Model complexity and running time

Table 6 compares ECONet with other SOTA methods in terms of 
model complexity (K), running time (s), and memory usage (MB) on 
the CIDIS dataset for ×16. To provide a fair comparison, all meth-
ods were tested using the same setup, with their public source code 
and default hyper-parameters, on an Intel Core i9-10900K CPU and an 
NVIDIA RTX 3090 GPU. The proposed method generates super-resolved 
images significantly faster than other SOTA approaches. This compari-
son shows that our proposed model properly balances performance and

Table 6 
Average running time (s) and memory consumption (MB) comparison on CIDIS 
dataset for ×16.
 Methods  Parameters(K)  Memory(MB)  Running Time(s)  PSNR(dB)
 JIFF [49]  10831  7999  0.8929  19.46
 DKN [50]  1160  16352  0.4587  23.10
 FDKN [50]  693  3611  0.3571  22.76
 DAGF [51]  2440  7974  0.2564  23.52
 PMBANet [43]  113144  5053  0.2019  24.41
 DCTNet [45]  483  3486  0.3322  21.13
 ECONet (ours)  948  1824  0.0280  24.79
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running-time requirements, which makes it suitable for real-time appli-
cations or devices with low computation capacity.

6.  Conclusions and future work

In this paper, we introduce ECONet, a novel Edge Craft Odyssey Net-
work designed for Guided Thermal Super-Resolution (GTSR), address-
ing challenges arising from spectral disparities between low-resolution 
thermal and high-resolution RGB images. Through the integration of 
the Progressive Edge Prediction (PEP) module, Edge-Weighted Gradi-
ent Blending (EWGB) technique, and Cascade Deep Feature Extractor 
(CDFE), ECONet enhances the resolution of low-quality thermal im-
ages while preserving essential features and suppressing irrelevant tex-
tures. These modules work together to exploit edge information, con-
trol blending intensity, and extract deep features, thereby improving the 
overall quality and visual fidelity of super-resolved thermal images. A
series of ablation experiments demonstrated the effectiveness of the 
proposed components. Empirical results confirmed that our method 
reconstructs high-frequency details, preserves object structures, and 
outperforms state-of-the-art GTSR approaches in both distortion and
perceptual metrics, while maintaining a lightweight and efficient archi-
tecture.

In the future, we plan to address challenges in guided super-
resolution when low-quality thermal images and high-quality RGB-
guided images are misaligned, a frequent issue in multi-sensor systems. 
Such misalignment disrupts pixel-wise correspondence between the two 
modalities, reducing the effectiveness of conventional super-resolution 
approaches. To overcome this, we aim to develop blind-guided super-
resolution techniques that do not depend on precise sensor alignment. 
Additionally, we will investigate the use of generative adversarial net-
works (GANs) to mitigate registration issues. Our ultimate goal is to 
enhance the robustness of our methods in real-world scenarios, where 
perfect image alignment is rarely achievable, thereby ensuring stronger 
performance and broader practical applicability.
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