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ABSTRACT Recent breakthroughs in single image super resolution have investigated the potential of deep
Convolutional Neural Networks (CNNs) to improve performance. However, CNNs based models suffer from
their limited fields and their inability to adapt to the input content. Recently, Transformer based models
were presented, which demonstrated major performance gains in Natural Language Processing and Vision
tasks while mitigating the drawbacks of CNNs. Nevertheless, Transformer computational complexity can
increase quadratically for high-resolution images, and the fact that it ignores the original structures of
the image by converting them to the 1D structure can make it problematic to capture the local context
information and adapt it for real-time applications. In this paper, we present, SRFormer, an efficient yet
powerful Transformer-based architecture, by making several key designs in the building of Transformer
blocks and Transformer layers that allow us to consider the original structure of the image (i.e., 2D
structure) while capturing both local and global dependencies without raising computational demands or
memory consumption. We also present a Gated Multi-Layer Perceptron (MLP) Feature Fusion module to
aggregate the features of different stages of Transformer blocks by focusing on inter-spatial relationships
while adding minor computational costs to the network. We have conducted extensive experiments on
several super-resolution benchmark datasets to evaluate our approach. SRFormer demonstrates superior
performance compared to state-of-the-art methods from both Transformer and Convolutional networks, with
an improvement margin of 0.1 ∼ 0.53dB. Furthermore, while SRFormer has almost the same model size,
it outperforms SwinIR by 0.47% and inference time by half the time of SwinIR. The code will be available on
GitHub.

INDEX TERMS Single image super resolution, transformers, convolutional neural network.

I. INTRODUCTION
The Super Resolution has been studied since 1974, when
Gerchberg [1] introduced the notion of Super Resolution
(SR) to improve optical system resolution over and above
diffraction, since then the idea of super resolution has been
defined as a way to obtain high resolution (HR) images from
its degraded low resolution (LR) image with high visual
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quality, more realistic textures and enhanced in details of the
given low-resolution input image.

Although super resolution being explored for decades,
single image super resolution is still an active yet challenging
topic in Computer Vision due to its complex nature and high
practical values in improving image details and textures. The
recent success of image super resolution has the potential
to significantly improve the quality of media content,
resulting in better user experiences. For example, the digital
zoom algorithm used in mobile cameras and the image
enhancement techniques used in digital devices. Furthermore,
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this core technology can be applied to a wide range of
Computer Vision tasks, which leads to improvements in
various Vision tasks, such as object detection [2], [3], medical
imaging [4], [5], security and surveillance imaging [6], [7],
face recognition [8], [9].
There are several reasons that make image super resolution

remains challenging: i) Super Resolution is fundamentally an
ill-posed inverse problem. There aremultiple solutions for the
same low-quality image instead of a unique single solution.
ii) The complexity of the problem increases, as the up-
scale factor increases. The retrieval of missing scene details
becomes even more complicated with greater factors, which
often leads to the reproduction of incorrect information; and
iii) there are fundamental uncertainties among the LR andHR
data since the down-sampling of different HR images may
lead to a similar LR image [10].

Formerly, different methods were utilized to tackle super
resolution problems, such as statistical methods, prediction-
based methods, patching methods, edge-based methods, and
sparse representation methods. However, researchers have
lately been using Deep Learning (DL) approaches to solve the
problems of image super resolution due to advanced progress
in computer computational power.

FIGURE 1. PSNR vs. Model size trade-off on Urban100 (×4). SRformer
achieves superior performance among all the CNN and Transformer
networks.

Deep learning ConvNet-based approaches have consis-
tently improved significantly to the classical methods over the
last decade. Numerous deep convolutional neural networks
introduced [11], [12], [13], [14], [15], [16] as well as
many lightweight networks and techniques to reduce the
computational complexity of the networks, such as using
filter pruning [17], knowledge distillation [18] to minimize
computing time by narrowing the network. However, these
techniques often lead to poor performance due to several
reasons such as lower network capacity, long inference time,
and a large number of operations due to several iterations
through the forward process.

In addition, ConvNet-based approaches suffer from two
main issues that come from the fundamentals of the
convolution layer. First, there is no content dependency in
the interactions between images and convolution kernels. The
same convolution kernel is used to restore various image

regions, which is not the ideal solution. Second, convolution
is effective for capturing local context information but
ineffective for capturing long-range dependency [19].
Transformer [20] introduced to tackle the aforementioned

problems of convolution layer, by designing a self-attention
mechanism to capture global interactions between contexts,
has shown promising performance in several Vision and NLP
tasks [21], [22], [23]. However, the self-attention mechanism
computational cost increases quadratically when dealing with
spatial resolution and also ignores the local 2D structure
information of the image by processing images as a 1D
structure [24]. Furthermore, these methods usually need
to occupy heavy GPU memory, which greatly limits their
flexibility and application scenarios for low-capacity devices.

In this paper, we propose a novel lightweight approach
for a single image super resolution task, namely SRFormer
by bringing the strengths of both the convolution layer and
Transformer layer together to address the aforementioned
problems. By advancing both Convolution and Transformer
together, SRFormer is able to capture both local context
information and global interactions between contexts while
staying computationally efficient. The combination of both
CNN and Transformer together with the precise design of
our SRFormer architecture, allows our model to perform
exceptionally well on benchmark datasets with faster training
and inference times compared to other Transformer based
networks. It is worth mentioning that, SRFormer trained
with only a single GPU for 3 days, while SwinIR trained
on 8 GPUs for almost 2 days to achieve their results.
Also, SRFormer has the advantage of multi-scale training,
which can generate SR images with different scale factors
[×2, ×3, ×4] in one training phase, while other methods
need to train separately for each scale factor. As illustrated in
Fig. 1, the proposed SRFormer yields to 21% improvement
on average of all benchmark datasets for scale factor 4 when
compared to the SwinIR [19]– SOTA Transformer-based
model, which shows the efficiency of the proposed model.
The extension of this work on cross-spectrum applications
can be found at [25].

The main contributions of our work can be summarized as
follows:

• We present SRFormer, an efficient yet powerful Trans-
former based network for single image super resolution
task, which is faster in training and inference time while
generating more accurate SR images.

• We present a lightweight Dual Attention layer, which
significantly improves the reconstruction quality by
generating a global attention map from two local
attention weights, which obtain individually by two
branches in parallel while it’s not memory hunger.

• We present a low-cost Gated MLP Feature Fusion mod-
ule that yields a powerful representation by aggregating
multi-stage feature representation from Transformer
blocks with minor computation complexity.

• Extensive experiments show that SRFormer achieves
state-of-the-art on various benchmark datasets for Single
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Image Super Resolution (SISR) tasks compared to
CNN/Transformer based networks.

The rest of the paper is organized as follows: Section II
discusses the related work, including CNN- and Transformer-
based super resolution methods. Section III describes the
proposed SRFormer and its core components in detail.
Experimental comparisons against several state-of-the-art
methods are presented in Section IV. The model investigation
presents in section V. Section VI concludes the paper.

II. RELATED WORK
In this section, the most recent state-of-the-art SR deep learn-
ing CNN and Transformer based approaches are detailed.

A. DEEP LEARNING BASED IMAGE SUPER-RESOLUTION
Single Image Super Resolution aims to restore the well-
detailed image from its low-quality version. Dong et al. [10]
introduced Super-Resolution Convolutional Neural Network
(SRCNN), which is the first work using CNN to tackle the
SR task. The SRCNN presents a shallow neural network
that receives an upsampled image as an input that cost
extra computation. Later on, to address this drawback, Fast
Super-Resolution Convolutional Neural Network (FSRCNN)
[26] and Efficient Sub-Pixel Convolutional Neural network
(ESPCN) [27] have been proposed by receiving the LR
image as input to reduce the large computational and run-
time cost and upsampling the features near the output of
the network by a single transposed convolution layer. Even
though the strength of deep learning shows up from deep
layers, the above-mentioned methods are referred to as
shallow networks. Therefore, Kim et al. [28] use residual
learning to ease the training challenges and increase the
depth of their network by adding 20 convolutional layers.
Then, [29] proposed a memory block in MemNet for deeper
networks and solves the problem of long-term dependency
with 84 layers. Lim et al. [30] introduce Enhanced Deep
Super-Resolution network (EDSR) by expanding the network
size and enhancing the residual block by omitting the batch
normalization from a residual block. Zhang et al. [31] propose
Residual Dense Network (RDN) with residual and dense skip
connections to fully use hierarchical features.

Furthermore, in recent years the interest in building
lightweight and efficient models has increased in super
resolution tasks to reduce the high computational cost of
this task. Ahn et al. [32] design an efficient network that
is suitable for the mobile scenario. Later, [33] introduces
Multi-Attentive Feature Fusion Super-Resolution Network
(MAFFSRN) by proposing multi-attention blocks to improve
the performance. LatticeNet [34] introduces an economical
structure to adaptively combine Residual Blocks. Recently,
OverNet [16] introduced by designing an efficient network
structure by introducing amulti-loss function to boost the net-
work performance. Also, a neural architecture search (NAS)-
based strategy has been also proposed in SISR to construct
efficient networks—Multi-Objective Reinforced Evolution in
Mobile Neural Architecture Search (MoreMNAS) [35] and

Fast, Accurate and Lightweight Super-Resolution (FALSR)
[36] are some examples of using NAS strategy in their
network. However, due to the limitation in NAS strategy, the
performance of these models is limited.

B. VISION TRANSFORMER
Transformer networks show breakthrough performance in the
Natural Language Process (NLP). In contrast to ConvNets,
Transformer networks have the advantage of capturing long-
range dependency in the input with global self-attention. The
core idea of the Transformer is the self-attention module,
which is capable of capturing long-term information between
sequence elements.

The impressive performance Transformer based network
in the NLP domain inspires the Computer Vision community
to adopt the Transformer for Vision tasks. The first work in
this direction has been done by Alex et al. who propose ViT
[22] as a Vision Transformer, which replaces the standard
CNN with Transformer and directly trains on the medium-
size flattened patches with large-scale data pre-training.

Since introducing the first work, many Transformer
based architectures have been proposed for the Vision
tasks in image recognition [37], object detection [21], [23],
segmentation [38], [39], and action recognition [40], [41].
In addition, Transformer based models have been studied
for low-level vision problems such as super resolution [19],
[42], [43], image colorization [44], denoising [45], and
image restoration [46]. For instance, DEtection TRansformer
(DETR) [23] is a transformer network designed for object
detection, which can predict a set of objects and model their
relationships. SwinIR [19] was introduced by Jingyun et al.
for low-level vision tasks by using Swin Transformer [21] by
applying self-attention within local image regions to solve the
low-level vision problems.

Although the Transformer based networks achieve excel-
lent performance in low-level Vision tasks, these methods
still depend on providing heavy GPU resources to train the
model, which is not feasible or available to most researchers.
Also, the computational complexity of self-attention in
Transformers can increase quadratically with the number of
tokens to mix (i.e., image patches), thereby prohibiting its
application to high-resolution images. Therefore, in contrast
to recent work in the super resolution domain, we present
a Transformer based network that can learn long-range
dependency and local context information while remaining
computationally efficient without the need for heavy GPU
resources.

III. PROPOSED METHOD
In this section, the overall network architecture of the
proposed SRFormer is described. Later, detailed information
on the Dual Attention layer is provided.

A. OVERALL PIPELINE
The primary goal is to design an efficient Transformer
architecture, which can generate well-detailed high-quality
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FIGURE 2. The overall network architecture of the proposed SRFormer.

images while remaining computationally efficient. Thus,
we utilize the basic Transformer structure but specially
designed for efficient network structure with significant per-
formance gains compared to existing CNN and Transformer
networks. The overall architecture of the SRFormer is shown
in Fig.2. In particular, the proposed SRFormer consists of four
modules: Shallow Feature Extraction (SFE), Dense Feature
Extraction (DFE), Gated MLP Feature Fusion (GMFF), and
Multi-Scale Up-Sampling (MS-UP) modules. We defined ILR
and ISR as the low- and high-quality input and output of our
network.

B. SHALLOW FEATURE EXTRACTION
The convolution layer proves that can perform well at early
visual processing, which leads to improved performance of
the network [47]. Therefore, a single 3 × 3 convolutional
layer is applied on the given low-quality input image ILR to
extract the initial features and map the input image space to
a higher dimensional feature space to generate a better SR
image. Therefore, we extract the shallow features F0 as:

F0 = Conv3×3(ILR), (1)

C. DENSE FEATURE EXTRACTION
Next, the extracted shallow feature passes through the Dense
Feature ExtractionFDFE as an input. DFE is built upwith a set
of Transformer blocks. The input is first processed by input
embedding such as patch embedding for Vision Transformers
(ViTs):

IEMB = InputEmb(F0), (2)

where IEMB denotes the embedding tokens with the length of
N sequence and C embedding dimension. Our Dense Feature

Extraction module takes embedding tokens as input to our
Transformer blocks. Specifically, Dense Feature Extraction
contains several Transformer blocks, which include ith

Transformer layers and a 1 × 1 Conv layer at the end of
each block with the benefit of waterfall residual connection
to transfer the information from the previous stage to the
current stage. The shallow features from the SFE process
through different Transformer stages extract more abstract
features and spotlight the high-level information (further
details provided in section III-G). Thus, we extract the feature
as follows:

FDFE = HDFE (IEMB), (3)

where HDFE (.) is Dense Feature Extraction module with
several Transformer blocks, which can be seen as

Fi = Conv1×1(C[HDATB(Fi−1),Xi−1], i = 1, 2, . . . ,K ,

(4)

whereHDATB(.) denotes the ith Transformer blocks.C denotes
the concatenation operation between the input feature of each
DATB block and the output. Concatenating a convolutional
layer within each stage of the Transformer block helps to
transfer inductive bias from the convolution operation into
the Transformer-based network and provides a more solid
foundation for the later aggregation of shallow and deep
features together.

D. GATED MLP FEATURE FUSION
The aim of the Gated MLP Feature Fusion (GMFF) design
is to highlight the location information in the stacked
feature map of different stages of Transformer blocks. GMFF
consists ofN stacked residualDATB as shown in Fig 2. GMFF
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first, accumulates the multi-stage features from different
Transformer stages to create multi-stage representations of
the input image. Then, passes the features through the
lightweight MLP network. However, in contrast to a standard
MLP network, we propose a novel MLP module by using a
3 × 3 Depthwise Conv layer inside the module to leak the
spatial information in order to boost the network performance
since highlighting such features are important in super
resolution task to achieve high performance. Also, the gating
mechanism is used by formulating the element-wise product
of two parallel routes of linear transformation layer that one
is activated with the GELU [48]. Thus, Gated MLP Feature
Fusion can be formulated as follow:

FGMFF = MLP(GELU (Conv3×3(MLP(Fi)))) + F0, (5)

whereFGMFF denotes the output of our feature aggregation of
multi-stage Transformer block with the initial features, which
is later used by the Multi-Scale Up-Sampling module. In the
ablation study, wewill show the effectiveness of our proposed
Gated MLP Feature Fusion compared to the standard MLP
network.

E. MULTI SCALE UP-SAMPLING
Given the feature from previous modules, which contains an
aggregation of low- and high-level information, our model
generates a high-quality image ISR. Multi-Scale Up-Sampling
(MSUP) module takes the features directly from GMFF
module to be able to reconstruct the high-quality output.
MSUP consists of several convolutional and pixel-shuffle
layers to upsample the features to the corresponding sizes
in one training phase instead of training for each interested
scale factor separately. Furthermore, we incorporate a global
connection path HUP with only a bicubic interpolation to
grant access to the original LR information and facilitate
the back-propagation of the gradients. The Multi Scale Up-
Sample module can be formulated as:

ISR = H↑

Rec(F0 + FGMFF + HUP(ILR)), (6)

where HRec(·) and ISR denote the up-sampling module and
high quality reconstructed image respectively:

F. LOSS FUNCTION
To keep the consistency with previous works, we use L1 loss
as a cost function during training to optimize the parameters
of the proposed SRFormer.

L1(θ ) =
1
N

N∑
i=1

∥ISR − IHR∥1 , (7)

where ISR is obtained by taking a low-quality image as the
input of our model and IHR is the corresponding ground truth.
In the next subsections, more details about our Transformer

layer are given.

G. DUAL ATTENTION LAYER
This section presents the proposed Dual Attention layer by
completely revising the token mixer (i.e., self-attention).
As well known, self-attention is playing an important
role to achieve high performance in Natural Language
Processing (NLP) and Computer Vision Transformer based
networks. However, self-attention can be problematic due to
several reasons, especially when it comes to working with
spatial resolution, which involves high-resolution images.
The computational complexity of self-attention increases
quadratically to the number of tokens to mix. Besides that,
self-attention treats images as flattened sequences, which
neglects the original structure of images therefore it ignores
the adaptability in channel dimensions, which has proven
important for visual tasks. Also, self-attention does not take
into account the local contextual information due to the nature
of self-attention. Thus, we introduce the Dual Attention layer
to overcome the aforementioned shortages by generating a
global attention map with less computational cost compared
to the existing token mixer. Dual Attention generates a
global attention map by aggregating two local attention
maps, which are separately obtained by using two different
branches, CNN-based Attention Module, and Transformer
self-attention in parallel. By doing so, unlike the previous
token mixer, Dual Attention can also consider both long-
range dependency and local contextual information with less
computational complexity.

As shown in Fig 2, we design our Dual Attention in a way
that it splits the channel features equally for both attention
module branches (SpAM and SeAM). From the Norm layer
tensor X , both of our branches receive half of the input tensor
to create the local attention maps individually. SeAM is a
self-attention Transformer, which first generates the query
(Q), key (K), and value (V) projections enriched with the
local context. We apply SeAM only across channels rather
than spatial dimensions. Our SeAM uses only depth-wise
convolutions to emphasize the channel-wise spatial context
before computing feature covariance to produce the attention
map. Thus, Q, K , V are computed as:

Q = WQ
d Y , K = WK

d Y , V = WV
d Y (8)

where W (·)
d is the 3 × 3 bias-free depth-wise convolution.

Next, query and key projections reshape in a way that their
dot-product interaction generates a transposed attention map.
Thus, the attention map generates as follows:

Attention(Q,K ,V ) = Wd (V .Softmax(K .Q/α)) + X (9)

where X is the input feature map and α is a learnable scaling
parameter that is used to regulate the magnitude of the dot
product of K and Q before applying the Softmax function.
Similar to previous works [19], [20], [49], we perform the
attention function for h times to learn separate attention maps
in parallel in our SeAM module.

The second branch of theDual Attention layer is the Spatial
Attention Module (SpAM), which is an almost parameter-
free attention mechanism. SpAM receives the other half of
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the input tensor to generate the local attention map. The goal
of the SpAM module is to encode the spatial information,
which represents the importance of each pixel in the input
feature with a negotiable cost. Given half of the input tensor
information, the channels of the input tensor are reduced by
mean and max operations, of which the shape is 1×H ×W .
The obtained features concatenated and then passed through a
convolution layer with a kernel size of 7×7. After, a sigmoid
activation layer applies to the output feature to generate the
attention weights of shape 1 × H × W which are later
multiplied with the input tensor to refined tensors of shape
C × H ×W . Thus, the SpAM can be formulated as follow:

X = Sigmoid(Conv7×7[FMean(X ),FMax(X )]) ∗ X (10)

where FMean(·) and FMax(·) denotes for mean and max
operations. Later, generated local attention maps from
SpAM and SeAM are concatenated together to obtain a
unified global attention map with less computational cost.
Thus, the generated attention map contains both long-range
dependency and local context information with enrich of
spatial features.

Following that, a multi-layer perceptron (MLP) with two
fully connected layers and a GELU non-linearity activation
function between them is employed for further feature
modifications. The norm layer is also added before MLP, and
both modules contain the residual connection between them.
Thus, the entire procedure inside of our Dual Attention is as
follows:

X = (Norm(SpAM (X/2) + SeAM (X/2))) + X

Y = MLP(Norm(X )) + X (11)

where Norm(·) stands for the normalization layer and Y for
the output feature map.

IV. EXPERIMENTAL RESULTS
A. SETTING
1) DATASETS
following prior works [34] and [70], DIV2K dataset has
been used for training and validating the network. DIV2K
splits into 800 high-quality images for the training phase,
100 validation images, and 100 test images. SRFormer is
trained with all training images and validated with validation
image sets. To evaluate the proposed method, five standard
benchmark datasets have been used, namely, Set5 [50], Set14
[51], B100 [52], Urban100 [53], Manga109 [54].

2) EVALUATION PROTOCOL
Two widely used quantitative metrics have been considered
to measure the performance of our SRFormer in order to
maintain consistency with previous works. Peak Signal-to-
Noise Ratio (PSNR) is measured in decibels (dB) and the
Structural Similarity index (SSIM), is computed between
generated SR images and the corresponding ground truths.
Keeping up with the SR community, the RGB reconstruction
results are first transformed to YCbCr space, and then just

the luminance channel is considered to compute the PSNR
and SSIM in our experiments.

3) DEGRADATION MODELS
In order to demonstrate the efficiency of the proposed
model, following the work of [31], three different degradation
models were created to simulate LR images and make fair
comparisons with available methods. Degradation data were
obtained as follows: Firstly, a bicubic (BI) down-sampling
dataset with scaling factors [×2, ×3, ×4] has been created.
Secondly, Blur-Downsampled (BD) has been created by
applying Gaussian kernel 7 × 7, and σ = 1.6 to HR
images and then downsampled imageswith scaling factor×3.
Aside from the BD, a more challenging degradation model
has been created, referred to as Downsample-Noisy (DN).
DN degradation model is down-sampling HR images with
bicubic followed by adding 30% Gaussian noise.

4) IMPLEMENTATION DETAILS
In the training phase, RGB patches are provided as inputs
with the size of 64 × 64 from each of the randomly selected
32 low-quality training images. Data augmentation is applied
on patches bymeans of horizontal randomflips and 90 degree
rotation. AdamP [71] optimizer has been employed with the
initial learning rate 10−3 and its halved every 4 × 105 steps.
L1 is used as a loss function to optimize the model. Also,
the configurations of our transformer encoder are as follows,
we used 4 Transformer blocks within 6 Transformer layers for
each block, Embedding dimension set to 64, andMLP ratio of
2 for all Transformer blocks. Also, a Conv1×1 is used inside
each Transformer block. SRFormer was developed by using
the PyTorch framework and trained on a single NVIDIA
RTX 3090 GPU to achieve its performance.

B. COMPARISON WITH STATE-OF-THE-ART METHODS
In this section, SRFormer and SRFormer+ are compared to
other lightweight state-of-the-art SR methods. Self-ensemble
method [72] is also used to further boost the performance of
the proposed SRFormer (denoted as SRFormer+).

1) RESULTS ON BICUBIC DEGRADATION
We present comparisons between the proposed method
(SRFormer and SRFormer+) and several of the most recent
lightweight SOTA CNN and Transformer based models:
VDSR [28], DRCN [55], CARN [32], CBPN [56], FALSR
[57], LAPAR-A [59], LatticeNet [61], MADNet [62], HDRN
[63], DPN [64], A2F [65], ESRT [42], and SwinIR [19]
on the Bicubic (BI) degradation model for scale factors
[×2, ×3, ×4]. Also, the number of network parameters
and Multi-Adds operations are presented in Table 1 to
demonstrate the complexity of the model and have a fair
comparison with the existing methods. As can be seen,
SRFormer produces superior outcomes in practically all cir-
cumstances when compared to the other methods mentioned
above. This shows that SRFormer is capable of continuously
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TABLE 1. Average PSNR/SSIM comparison with state-of-the-art CNN- and Transformer-based methods with the same range of network parameters on the
Bicubic (BI) degradation for scale factors [×2,×3, ×4] (Transformer based methods separated with horizontal line). Red is the Best and Blue is the second
best performance. We assume that the generated SR image is 720P to calculate Multi-Adds (MAC). SRFormer with self-ensemble results are Highlighted.

accumulating these hierarchical characteristics to build more
robust representative features that are well-focused on spatial

context information. This trait can be confirmed by the
obtained SSIM scores, which are based on the visible
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FIGURE 3. Visual results of BI degradation model for ×4 scale factor.

FIGURE 4. Visual results of BD degradation model for ×4 scale factor.

FIGURE 5. Visual results of DN degradation model for ×4 scale factor.

structures in the image and are therefore more accurate.
Furthermore, it can be observed that using self-ensembles

[72], the proposed SRFormer+ gains even more performance
benefits. Several visual outcomes are presented in Fig. 3.
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TABLE 2. Quantitative results with BD degradation model. Performance is shown for scale factor ×3. The best and second best results are highlighted in
red and blue respectively. SRFormer with self-ensemble results are Highlighted.

TABLE 3. Quantitative results with DN degradation models. Performance is shown for scale factor ×3. The best and second best results are highlighted in
red and blue respectively. SRFormer with self-ensemble results are Highlighted.

As can be seen, the texture direction of the reconstructed
images from all of the compared approaches is utterly
incorrect while the text is blurred in all the cases at different
levels. However, the results obtained by SRFormer are similar
to ground truth texture.

C. RESULTS ON BD AND DN DEGRADATION MODELS
We also provide the performance of SRFormer and
SRFormer+ on the BD (Blurry) and DN (Noisy) benchmark
datasets in Table 2 and Table 3 to illustrate the strengths
of the proposed model when it comes to a challenging
situation with SOTA models. Due to degradation mismatch
the following methods SRCNN and VDSR are re-trained
for both BD and DN. As can be seen, SRFormer outper-
forms all other lightweight SOTA models on challenging
benchmark datasets, and it is particularly impressive when
compared to other lightweight SOTA models. A high-
capability model, RDN [31] is also listed, which is used
to demonstrate the superior performance of our SRFormer

in comparison to a deep and costly model in these
challenging datasets. SRFormer performs better in both
datasets notwithstanding, RDN is a significantly expensive
network compared to the low-cost SRFormer. RDN is near
×20 more expensive in terms of computational complexity.
Furthermore, a visual representation of both challenging
BD and DN benchmark datasets is shown in Fig. 4 and
Fig. 5 respectively. As can be seen, our proposed method
performs better in comparison with other SOTA methods in
removing the noises and fuzzy regions from the input image,
which results in generating sharper with fine details SR
images.

V. ABLATION STUDY
The performance of the proposed model is further inves-
tigated through an extensive ablation study that includes
in-depth examinations of the impact of each module. The
ablation study is designed to provide additional insight into
the performance of the proposed model.
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FIGURE 6. Performance investigation on different settings of SRFormer
on Urban100 for scale factor ×4.

A. RELATION BETWEEN NUMBER OF TRANSFORMER
BLOCKS AND LAYERS VS. PERFORMANCE AND NETWORK
PARAMETERS
We investigate deeply the relation between the number of
Transformer blocks (DATB) and Transformer layer (DAL)
on the performance and model size of our proposed model
architecture in Fig 6. We discovered that the performance
(PSNR) of the network has a positive relationship with the
aforementioned hyperparameters however performance gains
by increasing the number of blocks and layers will not come
for free. By increasing the number of blocks or layers while
performance continuously improves, the overall number of
network parameters and FLOPs increases, which makes the
network computationally inefficient. Also, we can see that
by increasing these hyperparameters, the performance benefit
gets more and more limited until it is start to saturate
progressively. Thus, we design our network by choosing
four Transformer blocks and six Transformer layers inside
of each block to still have a lightweight yet powerful feature
extraction module.

B. VISUALIZATION ON INFLUENCE OF CONV LAYER IN
TRANSFORMER BLOCK
Figure 7 shows the average feature maps of each stage
of our Dense Feature Extraction module to investigate the
impact of the conv layer when it stacks up with Transformer
layers. Each average feature map is the mean of Fout
in channel dimension, which represents the output of the
Transformer block at each stage. The average feature maps
without a conv layer are shown on the top row, and with
a conv layer within Transformer blocks are illustrated on
the bottom row. By visualizing the feature maps, we can
first see that, using a conv layer within a Transformer, helps
the Transformer to learn sharper representations compared
to without a conv layer. Second, as the network focuses
more on high-level information, feature maps tend to
include more negative values at each stage, indicating a
stronger impact of suppressing the smooth area of the input
image, which further leads to a more accurate residual
image.

C. IMPACT OF DUAL ATTENTION
We further study the impact of both proposed SpAM and
SeAM to illustrate the effectiveness of the proposed Dual

Attention. We investigate the performance of SRFormer with
the standard self-attention layer [20] and each sub-branch
of our Dual Attention layer. As can be seen in Table 4, the
SRFormer with Dual Attention boosts the performance of
the network while using less computational cost compared to
when the standard self-attention layer replaces in the network.
In contrast to other self-attention layers, Dual Attention is
built up with two parallel branches, which are able to encode
the spatial information more efficiently and enables Dual
Attention to preserve a rich representation while shrinking its
depth to make further computation lightweight. Also, it helps
the network train faster compare to other transformer-based
networks.

TABLE 4. Influence of different settings of the dual attention layer on
Urban100 for scale factor ×4.

FIGURE 7. Average feature maps of Transformer blocks (DATB). Top: DATB
without Conv layer. Bottom: DATB with Conv layer.

D. INFLUENCE OF GATED MLP FEATURE FUSION
Table 5 shows the impact of our proposed lightweight
Gated MLP Feature Fusion compared to without and with
baseline MLP on the performance of the proposed network.
In addition, we investigate the impact of the usage of
depthwise, pointwise conv layer, and gated mechanism in
our Gated MLP Feature Fusion. As can be seen, SRFormer
obtains performance gain compared towhen the network does
not contain any MLP module or even when it is compared
to the baseline MLP with a less computation cost. The
intuition behind that is, GMFF uses a gated mechanism
to allow gradients to backpropagate more easily through
depth, and a Dw-Conv layer between the MLP layers to leak
the location information, which leads the network to pay
attention to positional information, unlike the baseline MLP
that uses positional encoding [22] to introduce the location
information, which is not suitable when the test resolution is
different from training resolution. Furthermore, we illustrate
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the performance gain of our Gated MLP Feature Fusion with
pointwise, depthwise convolution layers, Gated Mechanism,
and without GMFF. As shown in Table 6, the performance
of our SRFormer boosts when a depthwise convolution layer
with a gated mechanism is used compared to other settings.

TABLE 5. Gated MLP feature fusion performance investigation on
Urban100 for ×4.

TABLE 6. Impact of different gated MLP feature fusion setting on
Urban100 for scale factor ×4.

TABLE 7. Perceptual index comparison between proposed method and
recent lightweight state-of-the-art methods on benchmark datasets for
scale factor ×4. The lower is better.

TABLE 8. Average running time (s) and memory consumption (MB)
comparison on Urban100 for scale factor ×4.

E. PERCEPTUAL INDEX METRIC
To assess the quality of the generated super resolution images,
the Perceptual Index (PI) is used, which is more accurate
in reflecting human perceptions of image quality compared
to other metrics (PSNR and SSIM). Table 7 illustrates the
PI metric between SRFormer and SOTA methods with the
same order of magnitude in terms of network model size.
It can be seen that the proposed model achieves lower results
(lower is better) compared to othermodels. This demonstrates

the ability of the proposed SRFormer for generating more
realistic images.

F. MODEL COMPLEXITY AND INFERENCE TIME ANALYSIS
Table 8 illustrates the advantages of the proposed SRFormer
architecture in terms of Network Parameters (M) Inference
Time (s) and Memory Consumption (MB) compared to exist-
ing light- and heavy-weight SOTA CNN and Transformer
base architectures on Urban100. In order to make a fair
comparison, all the models are measured with the same
configuration with their published source code and default
hyper-parameters on a single NVIDIA RTX3090 GPU.
As shown, our model has the shortest inference time and less
memory hunger per image compared to Transformer models.
This comparison illustrates that our model successfully
strikes a balance between performance and running time
requirements.

VI. CONCLUSION AND FUTURE WORK
In this paper, we present a novel and efficient Transformer
architecture-based network called SRFormer. The proposed
model is designed by using the strength of both Convolutional
and Transformer layers to extract and preserve the fine
details of the features while remaining memory efficient.
To do so, we introduce a Dual Attention layer, a Transformer
layer, which generates the global attention map from two
different branches (SpAM and SeAM) in order to capture
both local context information and global dependency
between sequences. Also, we introduce a lightweight Gated
MLP Feature Fusion to aggregate the multi-stage feature
representation by focusing on inner spatial information
before upsampling module. We demonstrate the efficiency
of the proposed method through a series of ablation
investigations. We have empirically demonstrated that our
approach outperforms previous lightweight state-of-the-art
methods on all benchmark datasets, despite having similar or
fewer network parameters. In the future, we will expand our
proposal for blind super resolution when there is no ground
truth during training and inference. To do so, we will attempt
to change the methodology of our proposed architecture to
use Generative Adversarial Network.
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