
A Dijkstra-based algorithm for selecting the
Shortest-Safe Evacuation Routes in dynamic

environments (SSER)

Angely Oyola, Dennis G. Romero, and Boris X. Vintimilla

Faculty of Electrical and Computer Engineering, Escuela Superior Politécnica del
litoral, Km 30.5 via Perimetral, P.O. Box 09-01-5863, Guayaquil-Ecuador

{ajoyola;dgromero;boris.vintimilla}@espol.edu.ec

Abstract. In this work it proposed an approach to addressing the prob-
lem to find the shortest-safe routes in buildings with many evacuation
doors and where the availability status of internal areas could be changed
by different kind of sensors. We present two advantages over the com-
mon use of Dijkstra’s algorithm, related to the problem of obtaining
evacuation routes: 1) Fast search of the shortest-safe evacuation route to
multiple exits with a backward approach and 2) Support to dynamic en-
vironments (graph with variable vertex availability). Four Dijkstra-based
algorithms were considered in order to evaluate the performance of the
proposed approach, achieving short times in evacuation to multiples ex-
its.

Keywords: Dijkstra, Dynamic environments, Shortest-Safe

1 Introduction

Determining short routes has been a topic of interest in different scenarios and
application areas. Currently different proposals based on Dijkstra’s algorithm,
among others, are intended to determine short routes in applications such as
routing protocols, transport routes, evacuation systems, among others [1][2].

In the scope of evacuation systems, algorithms based on Dijkstra have been
developed to calculate evacuation routes, seeking to optimize resources, simplify-
ing methods and obtaining acceptable response times even with large amounts of
data, addressing problems where is necessary to analyze all possible evacuation
routes, indicating a single exit as destination. However, traditional implemen-
tations of these algorithms are impractical in dynamic environments, where the
availability of evacuation routes may vary suddenly, for example, in applications
requiring continuous monitoring. These dynamic environments can be found in
buildings with several exit doors, where it is common to find some blocked areas
for maintenance, cleaning or security concerns. A proper monitoring solution
should ensure that, in an emergency situation, people can be driven towards
alternative routes but avoiding suggestions that lead people to dangerous zones
and also to perform unnecessary calculations for this purpose[3]. The present

work aims to contribute to the solution of calculating the shortest-safe routes,
oriented to be applied in dynamic environments.

The manuscript is organized as follows. Related works are presented in Sec-
tion 2. Then, SSER approach (Shortest-Safe Evacuation Routes) is introduced
in Section 3, which consider the backward searching from multiple exits, storing
meta-data in vertex in order to select efficiently a shortest-safe evacuation route
considering dynamic environments. Experimental results are provided in Section
4. Finally, conclusions are given in Section 5.

2 Related work

Techniques like Dijkstra [4], Floy-Warshall [5] and Bellman Ford [6] are the
most commonly used algorithms for evaluating shortest paths, considering their
simplicity, being Dijkstra the one with the best run-time on extensive graphs
[1] [2]. These algorithms have been used to propose novel approaches for route
planning in different application contexts such as buildings, sensor networks,
vehicle congestion, among others.

In this sense, we review some studies related to the problem of route plan-
ning which includes finding the shortest path, reducing resource consumption,
processing times and getting safe solutions.

The work presented by Artmeier et al. in [7] addresses the problem of route
planning for electric vehicles, where an important aspect is to minimize en-
ergy consumption. Mohring et al. in [8] consider Dijkstra’s algorithm for the
point-to-point shortest path problem in large and sparse graphs with a given
layout. Their work examines partitioning algorithms from computational geom-
etry and compares the impact on the speed-up of the shortest path algorithm.
The first contribution of the study is to evaluate whether partitioning algorithms
from computational geometry can be used for the arc-flag approach, comparing
the results with METIS [9]. As a second contribution, Mohring et al. present
a multi-level version of arc-flags that produces the same speed-up with lower
consumption.

On the other hand, Rosenthal [10] considers cooperative games for addressing
the problem of finding the shortest path from a specific source to all other nodes
in the network. This paper applies Dijkstra’s algorithm in the development of a
rail system for metropolitan areas to bring passengers in outlying stations from
a central terminal as fast as possible. The initial contribution of this work is to
define the shortest path games in the context of designing commuter rail lines
for metropolitan areas. Such design is focused not only on building a network
that minimizes travel times but also for reducing capital costs in a fair manner.

In [11] the Dijkstra’s approach has served on the development of algorithms
to find short routes in buildings with a single evacuation door and with always-
available areas. However, nowadays it’s not enough to find short routes but
also finding routes that take less time to be followed, less effort or resource
consumption and safer. There are some situations according to the size and
building configuration that requires several exit doors, as well as areas that can

be temporarily or permanently disabled. Many studies have been conducted to
develop systems that could exclude unsafe paths and calculate the shortest-safe
path from multiple starting points to multiple exit points during an emergent
situation [1] [12].

3 Proposed approach

Regarding the problem of determining the shortest evacuation routes, Dijkstra’s
algorithm is one of the most popular if compared with Bellman Ford [2] and
Floyd-Warshall [1], due to its simplicity and time complexity O(n2). Dijkstra’s
algorithm calculates the shortest routes considering a single vertex as source, in
the context of this work it is equivalent to a single evacuation route and escape
areas always available. However, nowadays many buildings have several evacua-
tion routes and the availability of escape areas varies at different time intervals
[13]. To overcome the difficulties associated with dynamic environments (variable
availability of escape doors and evacuation routes), the SSER approach (Safe and
Short Evacuation Routes) uses its own structures to represent different areas of
the building, aisles and evacuation doors. In this sense, two main structures are
used (Fig. 1): vertex, corresponding to escape areas of the building (offices or
places with access to the main aisles or escape routes) and the edges or aisles
connecting these areas (Table 1).

E1

R

E0

R

R

R

R

R

Vo

V1

V2

V3

V4

V5

V6 V7

Ed6<10>

Ed7<4>

 Pv*: Previous Vertex
 Av*: Adjacent Vertex

Ac Weight*: Acumulated Weight

Vo Escape Routes List
Key <Pv*, Ac Weight*>

 1, 22
 6, 14

Vo Edges List
Edge <Av*, Weight>

1, 5
 2, 15
 6, 10

Fig. 1. Graph representing the building’s evacuation areas (R), evacuation paths (Ed)
and evacuation doors (E).

Each vertex has two structures (type vector) to represent the list of paths
related to each escape area and the list of aisles in direct connection with them,
getting as result the adjacency matrix for calculating escape routes (Table 2).

Table 1. Vertex Properties

Property Description
Type R (room), E (escape)

Access status A: Active, I: Inactive
Edge list vector < Dv∗, weight >

Table 2. Adjacency Matrix corresponding to Fig. 1

Vertex 0 1 2 3 4 5 6 7
0 - 5 15 - - - 10 -
1 5 - - 5 - - - -
2 15 - - 15 - - - -
3 - 5 15 - 10 12 - -
4 - - - 10 - - - -
5 - - - 12 - - - -
6 10 - - - - - - 4
7 - - - - - - 4 -

Thus, the building is represented by a set of vertices interconnected by dif-
ferent adjacent arcs. Considering the structures and properties of the vertices,
adjacent arcs, evacuation routes and how the graph is examined, we can mention
two main advantages over the common use of Dijkstra’s algorithm, related to
the problem of obtaining evacuation routes [1]:

1) Fast search of the shortest-safe evacuation route to multiple exits with a
backward approach: Dijkstra’s algorithm seeks the shortest path among two pair
of vertices given a source vertex. In the context of evacuation systems, this type of
forward approach of Dijkstra’s algorithm (Fig. 2) does not differentiate between
vertices representing available evacuation doors and vertices representing areas
that need to be evacuated.

E1

R

E0

R

R

R

R

R

Vo

V1

V2

V3

V4

V5

V6 V7

Ed6<10>

Ed7<4>

Fig. 2. Dijkstra Forward Search

Considering that most buildings have multiple evacuation doors (target of
evacuation routes), the advantages of using SSER approach over common Dijk-
stra are explained on the base of the following Dijkstra’s pseudocode [14].

Algorithm 1 Dijkstra’s algorithm
Require: a source vertex a
Require: a target vertex z
Ensure: the weight of edge (i, j) is w(i, j) > 0
Require: L(z) the shortest route from a to z
1: procedure dijkstra (w, a, z, L)
2: L(a) := 0
3: for all vertices x 6= a do
4: L(x) :=∞
5: end for
6: T := set of all vertices
7: //T is the set of vertices where the shortest distance to a
8: //has not been calculated.
9: while z ∈ T do
10: begin
11: Choose v ∈ T with minimum L(v)
12: T := T − V
13: for each x ∈ T adjacent to v do
14: L(x) := minL(x), L(v) + w(v, x)
15: end for
16: end
17: end while
18: end dijkstra

The 4th line in the pseudocode is invoked n−times considering all vertices in
the graph. The 14th line is also invoked n-times to explore the adjacent vertices,
it could be n vertices in the worst scenario, that’s why Dijkstra’s algorithm has
a time complexity of O(n2). In this sense, if we keep the common Dijkstra’s
approach the algorithm should be iterated n-times for each vertex representing
an available door for evacuation, and m-times for each vertex representing an
evacuation door, where n is the number of available doors for evacuation and m
are all the evacuation doors. Considering this, the time complexity to determine
an evacuation route using common Dijkstra is O(m×n3), which is inefficient on
dynamic environments or real time applications. For this reason, SSER uses a
backward approach (Fig. 3), which involves to consider evacuation doors as the
starting point of the route, towards the different vertices representing evacuation
areas. It is just necessary to invoke Dijkstra m − times in order to calculate
the shortest-safe evacuation route per each vertex in the graph. It leads to an
increased efficiency for finding evacuation routes with a time complexity ofO(m×
n2).

E1

R

E0

R

R

R

R

R

Vo

V1

V2

V3

V4

V5

V6 V7

Ed6<10>

Ed7<4>

Fig. 3. SSER Backward Search

In order to achieve this, SSER approach uses structures in each of its vertices
for storing the short and safe previous neighbor vertex (considering a backward
search) that allows to construct the shortest-safe path to each available evacua-
tion doors in the building. Then, among the all available routes it is selected the
shortest one. The data type of the structure for the evacuation routes storing
is vector and consists of a pair: <id, accumulated distance>, where id is the
previous vertex identifier of the solution route, and the accumulated distance is
the sum of existing weights to reach the current vertex. This structure supports
exceptions that allows to consider another alternative when the shortest route
is not safe.

E1

R

E0

R

R

R

R

R

Vo

V1

V2

V3

V4

V5

V6 V7

Ed6<10>

Ed7<4>

 Pv*: Previous Vector
Ac Weight*: Acumulated Weight

Vo Escape Routes List
Key <Pv*, Ac Weight*>

1, 22
6, 14

Fig. 4. Illustration of two possible evacuation routes

2) Support to dynamic environments: Dijkstra’s common use works with a
static graph (where the vertices and edges, established at the beginning, are
always available). If the application requires to modify the connections in the
graph, it is necessary stop processing, modify the graph, load the graph and
execute the process again. All these steps when applied on large graphs, involves
waste of time, specially by considering emergency situations. For this, the SSER
approach includes the initially defined “Accessibility Status" property in each
vertex, in order to label the vertices as available or unavailable. It should be
noted that the update of the accessibility status is performed in real time without
having to stop processing. The information is sent by sensors housed in different
building areas, the kind of sensors used depends on the situation to monitor (fire,
smoke, toxic gases, among others). Based on the current status of the vertex, the
SSER approach will only consider the available vertices to obtain the evacuation
routes in the building. In this way, people are not addressed by escape routes
involving dangerous areas.

E1

R

E0

R

R

R

R

R

Vo

V1

V2

V3

V4

V5

V6 V7

Ed6<10>

Ed7<4>

Enabled
 Disabled

Fig. 5. Graph illustrating vertices with different access status

In this context, the proposed approach SSER is able to find the shortest-safe
evacuation route, considering the access availability of vertices.

4 Experimental results

It was compared the SSER algorithm’s runtime between other 4 Dijkstra-based
algorithms (Fibonacci, BGL, Lemon and OrTool)[15] with focus on graphs anal-
ysis using different data structures. One of the main considerations for testing
was to use the same programming language in the implementation of the men-
tioned methods to compare, in order to avoid discrepancies due to compiler or
code interpreter. The SSER approach was developed in C++. For testing pur-
poses were considered 3 graphs randomly-created (see Table 3), each one with
10,000 vertices (n), density (d) and different arcs (m). The equation used to

determine the graphs is: 2m
n(n−1) [15]. Following this, the algorithm SSER was

applied to each graph in Table 3, where were generated randomly 50 evacuation
doors (vertices as destination). The tests were performed on a computer Lenovo
T440p, Core-i7 with 16GB of RAM. The algorithm analyzed evacuation routes
to all vertices in the graph. This was not done with the other 4 methods (Fi-
bonacci, BGL, Lemon and OrTool) because these are focused on determining
the shortest path between two vertices.

Table 3. Random Graphs considered from [15]

Graph n m d
Rand1 10000 100000 0.001
Rand2 10000 1000000 0.01
Rand3 10000 10000000 0.1

Subsequently, we proceeded to calculate the execution time of the SSER algo-
rithm. The results are detailed in Table 4, where can be observed the execution
time of the SSER algorithm compared with the other four methods, which is
positioned in third place among the analyzed algorithms.

Table 4. Comparing runtimes

Graph Fibonacci BGL Lemon OrTools SSER
Rand1 0.052 0.0059 0.0074 1.2722 0.0177
Rand2 0.0134 0.0535 0.0706 1.6128 0.0459
Rand3 0.0705 0.5276 0.7247 4.2535 0.3704

One of the causes of its performance is due to its goals of seeking the safe
evacuation of all areas (represented by vertices in the graph), so it focused on
finding evacuation routes considering all vertices from each of the 50 evacuation
doors randomly selected for the test.

Although SSER did not get the best runtime, the results are enhanced by the
selection of safe routes considering all escape doors. With this it could be justified
how the SSER algorithm has an effective role in situations involving finding the
shortest safe routes, where is required to consider all selected vertices in the
graph to specific ones.

After analyzing the efficiency, was addressed the role of the algorithm to be
suitable for emergency situations. The study considered a graph with 8 vertices,
2 evacuation doors E0 and E1, 8 aisles and 6 areas that need to be evacuated (see
Fig. 6). With this graph an emergency was simulated by making unavailable the
vertex V3. The SSER algorithm considered the unavailability status of V3 and
discarded any evacuation route to the escape door E0 for safety reasons. This

was achieved by checking the availability status of vertices for each iteration and
considering only those accessible and safe. In addition, SSER marked V4 as an
blocked area since the only aisle Ed5 < 10 > suggests pass through a high risk
area.

E1

R

E0

R

R

R

R

R

Vo

V1

V2

V3

V4

V5

V6 V7

Ed6<10>

Ed7<4>

Enabled
 Disabled

Fig. 6. Illustration of an Emergency in v3

Although the shortest routes for V1 and V2 have the same destiny E0, the
algorithm have redirected the escape to the door E1 to fulfill its goal in the
selection of safe routes.

On the other hand, should be mentioned that each vertex stores informa-
tion about segments around vertices that make up different evacuation routes.
In the particular emergency illustrated in Fig. 6, the vertices stored only one
evacuation route to E1. After that V3 is enabled, the evacuation routes to E1 are
recalculated toward the two evacuation doors. Each vertex considered between
the two options the shortest one.

5 Conclusions

This paper tackles the challenging problem of computing evacuation routes in
buildings with multiple exits, seeking the safe option before the shortest one. In
order to fulfill this goal, the SSER approach considers variations on the graph by
storing meta-data into vertices, in order to be able to select another alternative
when some connection into the graph is broken, this can prevent evacuation
systems to suggest routes involving blocked or dangerous areas. This approach
makes the algorithm suitable to be applied on dynamic environments where the
availability status of internal areas can be modified by different kind of sensors.

References

1. Cho, J., Lee, G., Won, J., Ryu, E.: Application of dijkstra’s algorithm in the smart
exit sign. In: The 31st International Symposium on Automation and Robotics in
Construction and Mining (ISARC 2014). (2014)

2. Santos Navarrete, M.E., et al.: Estudio y simulación de algoritmos para la evac-
uación de personas en situaciones de emergencia sobre una estructura similar al
rectorado de la espol. RTE (2015)

3. Jang, J.S., Kong, I.C., Rie, D.H.: A study for optimal evacuation simulation by ar-
tificial intelligence evacuation guidance application. Journal of the Korean Society
of Safety 28(3) (2013) 118–122

4. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische
mathematik 1(1) (1959) 269–271

5. Floyd, R.W.: Algorithm 97: shortest path. Communications of the ACM 5(6)
(1962) 345

6. Bellman, R.: On a routing problem. Technical report, DTIC Document (1956)
7. Artmeier, A., Haselmayr, J., Leucker, M., Sachenbacher, M.: The shortest path

problem revisited: Optimal routing for electric vehicles. In: KI 2010: Advances in
Artificial Intelligence. Springer (2010) 309–316

8. Möhring, R.H., Schilling, H., Schütz, B., Wagner, D., Willhalm, T.: Partitioning
graphs to speedup dijkstra’s algorithm. J. Exp. Algorithmics 11 (February 2007)

9. Karypis, G., Kumar, V.: Metis: Family of multilevel partitioning algorithms.
wwwusers. cs. umn. edu/˜ karypis/metis/main. shtml (1995)

10. Rosenthal, E.C.: Shortest path games. European Journal of Operational Research
224(1) (2013) 132–140

11. Randell, B.: Edsger dijkstra. In: Object-Oriented Real-Time Dependable Systems,
2003. WORDS 2003 Fall. The Ninth IEEE International Workshop on. (Oct 2003)
3–3

12. Kim, D.O., Mun, H.W., Lee, K.Y., Kim, D.W., Gil, H.J., Kim, H.K., Chung, Y.S.:
The development of the escape light control system. Journal of the Korean Institute
of Illuminating and Electrical Installation Engineers 23(6) (2009) 52–58

13. Xu, Y., Wang, Z., Zheng, Q., Han, Z.: The application of dijkstra’s algorithm
in the intelligent fire evacuation system. In: Intelligent Human-Machine Systems
and Cybernetics (IHMSC), 2012 4th International Conference on. Volume 1., IEEE
(2012) 3–6

14. Johnsonbaugh, R.: Discrete Mathematics. 7 edn. Prentice Hall (12 2009)
15. Gualandi, I.: Dijkstra, Dantzig, and shortest paths.

http://stegua.github.io/blog/2012/09/19/dijkstra/ (2012) [Online; accessed
Jun. 18, 2015.].

